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Markov Processes and Applications

+ Discrete-Time Markov Chains
+ Continuous-Time Markov Chains
* Applications

- Queuing theory

- Performance analysis
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Discrete-Time Markov Chains

Books

- Introduction to Stochastic Processes (Erhan Cinlar), Chap. 5, 6

- Introduction to Probability Models (Sheldon Ross), Chap. 4

- Performance Analysis of Communications Networks and Systems
(Piet Van Mieghem), Chap. 9, 11

- Introduction to Probability, D. Bertsekas & J. Tsitsiklis, Chap. 6
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Example - A taxi driver conducts his business in three
different towns: 1, 2 and 3.

O We assume that once the taxi driver is at a given town, he stays there until
he picks up a passenger.

O We assume slotted time, that is, the taxi driver spends one hour in every
town per passenger, fixed.

O On a given day, when he is in town 1, the probability that the next passenger
he picks up is going to a place in town 1 is 0.3, to a place in town 2 is 0.2 and
to a place in town 3 is 0.5. When he is in town 2, the probability that the
next passenger he picks up is going to town 1is 0.1, to town 2 is 0.8 and to
town 3is 0.1. When he is in town 3, the probability that the next passenger
he picks up is going to town 1 is 0.4, to town 2 is 0.4 and to town 3 is 0.2.

O How would you model this problem ?
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Questions that can be asked

O Assuming that the passenger starts in town 1, where is he most likely
going to be after 4 passengers? (Chapman-Kolmogorov equations)

O For how long does he remains on a particular state once he reaches
it? (Sojourn times)

O What percentage of time does the taxi driver spend in a given town?
(Limiting state probabilities)

O Assuming that the taxi driver gets 10 Euros on average when he
picks a passenger in town 1, 20 Euros in town 2 and 30 Euros in
town 3, how much does he earn on average per day? (Weighted
average of limiting state probabilities)

O Assuming that the taxi driver starts in town 1, when is the first time he
gets to town 27? (First-passage times)
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Problem Formulation

Problem Formulation

» Let X, denote the town at which the taxi driver is at time slot n.
Hence, X, € {1,2,3}, n=0,1,....

» At the beginning (i.e. time n = 0), the taxi driver is in town / with
probability:
P(Xo = i) =¥

» At time n = 1, the taxi driver is at town j with probability:
P(X, =J) =3 PO = j1Xo = \P(Xo = 1) = > pyml”

where p;; refers to the probability of moving from town i to town ;.

» The town at which the taxi driver is at a given time (say time k)
only depends on the town at which he was at the previcus time
k — 1 (Markov property).
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INTRODUCTION :
nth order pdf of some stoc. proc. {X,} is given by
YA Sy e C AR S0 AN e e b B WA oo e ANt - p oY
SO, 1 X)) (%)
very difficult to have it in general
e If {X,} is an indep. process:
J X%, 500X, )= (2 ) (%, ) ()
e If{X,} is a process with indep. increments:
F O X, 5o, )= O, ) (%, =%, ) f (2, =%, )

Note : First order pdf's are sufficient for above special cases

e If {X,} is a process whose evolution beyond ¢, is (probabilistically)
completely determined by x, and is indep. of x, , 7 <%,, given x, , then:
S x50 x, )= f(x, [x, ) f(x, | %) (%)
This is a Markov process (nth order pdf simplified)
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Definition of a Markov Process (MP)

A stoch.proc.{X,;t € I} that takes values from a set £ is called
a Markov Process (MP) iff :

P(x, |x, 5%, )=P(x, |x ) (E countable)
or

UGl 6 5 TRl (XX ) (£ uncountable)

forallx, andalls, <7, <...<z, andalln > 0.

Notice: The "next"state x, isindep.of the"past”"{x, ,...,x, }

provided that the "present"is known.
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Definition of a Markov Chain (MC)

(Discrete - time & discrete - value MP)
If [ is countable and F is countable then a MP is called a MC
and is described by the transition probabilities :
PG, N=PX,,=jlX,=i}y i j€E
(indep. of n for a time - homogeneous MC). Assume E = {0,1,2,...} (state - space of the MC)

Transition matrix :
P(0,0) P0,1) .. P(0,n)
P1,0) P .. PQ,n)
pP=| : :
P(n,0) P(n)) .. P(n,n)

Pis non - negative, Z P@,j)=1, Vi  (stochastic matrix)
J

For a given P (stoch. matrix) a MC may be constructed
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Chain rule :
If 7isaPMF on E s.t. 7(i) = P{X, =i},i € E, then
R =N Xoe ST O RS o TN N — e BN ) (7 S
NYne NI, 9.4 el
k - step transitions :
VY keN,
P{X,,=Jj|X,=1}=P"G, )
Vi,je E,YkeN ; P!@,j)is the (i, j) entry of the kth power
of the transition matrix P.
Proof : For £ =3 (general n through iterations)

e e N (DR RS R (1)

LeE l,eE
P2 (ly.))
P(i.))
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Chapman Kolmogorov Equations :

From previous,

PR, =N PR P a y e

keE

In order for {X,} to be inj after m + n steps and starting from i ,
it will have to be in some k after m steps and move then to j in

the remaining » steps.

Bertsekas & Tsitsiklis

time 0 m m-+n
° @
i .
. e j
e €
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Example 6.2. A fly moves along a straight line in unit increments. At cach

time period. it moves one unit to the left with probability 0.3, one unit to the right
with probability 0.3, and stays in place with probability 0.4, independently of the
past history of movements. A spider is lurking at positions 1 and m: if the fly
lands there. it is captured by the spider. and the process terminates. We want to
construct a Markov chain model. assuming that the fly starts in one of the positions
2. oam —i.

Let us introduce states 1.2, ..., m. and identify them with the corresponding
positions of the fly. The nonzero transition probabilities are

pin=1, i =il

_ 0.3 ifj=i—lorj=i+1, .
])J_{“.4 lfj':i for =20 " m—1
= W 2
0.4 04

03 0303 ;;3 004003((;
() 9‘9 @l ol be
AR 03 AR aloo]o 1o

Py

Figure 6.2: The transition probability graph and the transition probability ma-
trix in Example 6.2, for the case where m =4
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Example: # of successes in Bernoulli process

{N,;n=0} , N, =#ofsuccessesinn trials
N,=>Y, , n=0 .Y indep. Bernoulli, P{Y, =1} = p
i=0

Notice: N,,, =N, +7Y

n+l

does not depend on {N,}'; (given N,) and thus {N,} is a M.C.

= evolution of {N,} beyond n

P{N, _j|N0aN1""’Nn}:P{Kz+1 :j_Nn |N0’N1""’Nn}

frEl

0
p ifj=N +1 At
o Ok g0 s
=3qg=1-p ifj=N, and P =
' 0 0 g poO
0 otherwise s

Notice: {N, } is a special M.C. whose increment is indep.

both from present and past (process with indep. increments)

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 13

Example: Sum of i.i.d. RV's with PMF {p,;k=0,1,2,...}
80 n=0
o A e e )

Xn+l =i Xn 7k Yn+1

PEX, = [ XX f = P = =20 |XO7""Xn}=pj—Xn
Thus {X, } is a M.C. with P(i, j) = P{X,,, = j| X, =i} = p,

po p 1 p 2 p B
0 p, P P
T U IR Ny
0880750 s
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Example : Independent trials

X,, X,,...i.i.d. with 7(k)

P{X

{X,}isaM.C.
7(0) 7(1)
7(0) =(1)

Pl [ :
7(0) z(1)

=002,
:j|X0""’Xn}:P{Xn+1 :J}:”(])

Notice that rows are identicaland P" =P Vm >1
(If P hasallrowsidentical then X, X,,... are1.1.d.)

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 15

Example:{Y }areiid. Y €{0,1,2,3,4} with{p,,p,, P,>Ps>Ps}

X,,=X,+Y . (modulo5) {X, }isaM.C.
_po b1 P Pz Pq
Dl s s PR 2 z rows =1 (stoch. matrix)
B AND L D w0y P P D3 Z columns =1 (here)
P» P;s Ps Do D (double - stochastic matrix)
P P Ps Ps Do
M105 - AvdAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2023 16
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Example : Remaining lifetime

An equipment is replaced by an identical as soon as it fails
=% 251

p, = Pr{anew equip. lasts for k£ time units}
X, =remaining lifetime of equip. at time »
X, (w)-1 if X, (w) 21
Xn+l (a)) . .
Z,\(@)-1  ifX,(0)=0
Z . (o) is the lifetime of equip. installed at time n

It is independent of X, X ,..., X,

X, isaM.C.
M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 17
M4l %
PGE,j)=P{X, ., =j|X, =i}=P{X, -1=j|X =i}
, e ]
S =R e == .
0 ifj=i-1
O
) SER e SR SIS o = 2 =
:P{Zn+l :j+l}:pj+l
0 e e D
155 ()RR () S ()
P N0 e - 300
W 0™ 199
18
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Theorem : (conditional indep. of future from past given present)
Let Y be a bounded function of X, , X .,,... . Then
E{YIX, XX = B{YIX, b

‘ Current and future states ‘

Proposition :
E{(X,, X, o IX, =1} = BYf(Xy, X\, \X, =1}

Corollary : /" a bounded function on £ x E x...
Let g(i)=E{f(X,,X,,.. )X, =i}
Then Vne N B X s e X TG o ()

A function that depends on current and the future states to be visited, is determined fully by the current state only.
Future states are probabilistically determined by the MP, while states visited in the past do not impact on future

ones given the current.
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Theorem : (conditional indep. of future from past given present)
Let Y be a bounded function of X, ,X . ,,... . Then
B{Y|X,.X,,...X,} = B{Y|X,) :

........... ?.._-_?,_T___ ?. -
] (] (] :
o o o ! | | o |
[] ] [] ]
o ) { ) |
(A WL, b e SR LA DTs b T e e
I E 4 s 6 18 /9 w0 ">
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Proposition :

EY(X,, X\s- X, =1 = E{(X, X, X, = 1}

o
o
******** AT i o
| o 0} i
o o o ! | l@l
| | | '
o | ' [} |
e e Pt bip o] s g R
0 3 4 s 6 /NI
o
'''''''''''' R e 1
| e i
@ o (] 3 ] ] o ]
| ' | '
o ) ' | '
TN N % o STl
i 2 .195 L R TR T
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Corollary : /" a bounded function on E x E x...
Let g(i)=E{fiX,,X;-- NX,=1i}.
Then Vne N B ARG, %) X X% e (FS)

--9-
[}
[}
(]
]

[
o - —-——?
1

S o
[}
[}
[}
[}
L]
!
7

((

3]
""""""""" ?"“1'* ‘?‘ T ¥
|
© W
] ]
s = ' e 2 :
(o] ' ' ] [}
A Y LA N TS Tl STl
|0)|2.!ysr-7aowﬂ
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Stopping Times :
Previous results derived for fixed time n e N
What if time is an RV instead?

e IfforaRVT,thepast{X,;m<T}and the future {X ;m=T}
are conditionally indep. given present X, then the strong Markov
property is said to hold at 7'.

e If T'is a stopping time, then above hold true (7 is a stopping time
if the event {T' < n} can be determined by looking at X, X,,..., X )

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 23

For any stopping time 7" :
o E{f(XpXpps) | X,on STy = EVf(Xp X7 ) [ X
o Forg(i)=E{f(X,.X,,..)| X, =i}

BV Xy X0 ) | X,in ST = g(X7)

1if a,=j

h , jeEmeN
0if a,#j

e.g.,iff(ay,a,...) :{

E{f (Xo.X,- )| X, =i} = PX, = j| X, =i} = P"(G, )
E{f (X Xy )| X,un < TY = P(X;,, = j| X,;n < T}

e Strong Markov property at T:

— : . - m £
P{XT+m_.]|Xn>nST}_P (XT:'.])
M105 - AvdAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2023 24
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Visits to a state

X ={X,;ne N} MC, State space E, Transition matrix P.
Notation: P{4}=P{A| X, =i} and E[Y]=E[Y | X, =i]
Let jeE, @€ Q and Define:

N, (w) = total number of times state j appears in X (@), X, (®),....
& N;(w) <o, X eventually leaves state j never to return.

% N (w)=o0, X visits j again and again.

Let 7/(®),T,(®),... the successive indices n>1 for which X, (w)=j.

VneN, {T (w)<n} is equivalent to j appearsin {X, (@), -, X, (@)} atleast m times.

T is a stopping time.

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 25

Example

L(@)=4, T(@)=6 T(@)=7 T,(®)=9..

E
o
o
AR e e e e S i
! 1 ' |
! [} [} |
L] o o ! ! | o 1
] ] [ 1
o ' ' [l '
R W R R S TR ST
aF )7 7 4 5 6 7T B 9 0o n
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Proposition: Vie E, k,m>1
0 HE =c3)

BT, Tl,...,Tw}:{P/{TI -4 7<)

m+1

T, =k

Computation of P{T, =k}. Let F,.(i, j) = P{T, =k}
Z

k=1 F,(.j)= P{L,
k22=F,(i,j)=P

}=B{X,=j}=P())
1 E Do Xl i Xg= )
P{X, =b}P{X, # j,--,. X, # j, X, =j| X, =b}

beE-{j} !

5 zbEE,{j;Pi{Xl =b}R{X, # j X, # X =

Thus,
P, j) k=1

/ F.(i, ) :{ z PG,b)F,_(b,)) k=2
beE-{j}

Probability to visit (be at ) state j for the first time at step k, starting from state i

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 27

1 0 0

Example: Letand the transition matrix p=|1/2 1/6 1/3

1/3 3/5 1/15
Find f,()=F.G /), =123
e k=1.1Inthis case f; isthe 3™ column of matrix P.
Hence, /()= F(L/))=0., ()= FQ2.)=1/3, £(3)=FG./)=1/15

Column vector
> PULB)F, (b, ))

F@1,)) st 1 0 0

e k>2.Inthiscase f, =| £, /) |=| D, PQbHF (b,)) |=0Q-f,_, where 0=|1/2 1/6 0
] 1/3 3/5 0
SR NS pei o)
0 0 0 0

After some algebra  f,=| 1/3 | f,=|1/18| f,=|1/108| f,=|1/648

1/15 1/5 1/30 1/180
and in general

1

171 k-1 1e
F(1,3)=0, 1‘1(2,3)25[gj »  FGJY= ]
== = k=22

516 3
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N
F.(1,3)=0, Fk(2,3)=5(gj ,  FGB3)= -

Now we can state:
e Starting at state 1, X never visits 3 with probability: P{7, =+oo} =1
e Starting at state 2, X first visits 3 at k with probability: 1 ()"

e Starting at state 2, X never visits 3  with probability:

B{T, =40} =1- B{T; <40} =1-> " L(by*" =3

st
e Starting at state 3, X never visits 3 again with probability:

BT, = +00) =1~ B{T, < +o0} = 2

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 29
Now, for every 7, j we define
F(i, )= PAT, <40} =3 F (i, )
=1
| F(i,j) expresses the probability: starting at i the MC will ever visit state ;.
F(i,j)=P@.)+ 3, PGLF®.))., icE
beE—{j}
If by N, we denote the total number of visits to state j, then
PAN, =m}=F(j, )" (1= F(j,)))
gy PV \ 1-F(,)) m=0
and for [ # j, NS = all s 7
. FGNFGN" (1-F(,))) m=L2,.
>From the previous we obtain the Corollary:
1 F(j,)<l1
PN, <0} ={ S
OB G) =1
M105 - AvdAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2023 30

10/25/2023

15



M

PJ{N] =mj

1

3
I

8

J)=PAT, <40} = F, (i, )

= F(Ja])”Pl(l_F(J,J))
m=1 = I 1
1 o starting at Zx ::, |x|<11te 7
=T(1—F(J,J))=1 "0
~F()) i)+ Y. PGbF(b,)), icE
beE—{j)}
If by N, we denote ti wmber of visits to state j, then
E m} = F(j, )" (1= F(,.J))

e T PIA \ { 1-F(i, j) m=0
nd for 1 # J, i 5 gl L, o . By
by ~ F, )FG, Y™ (1-F (. ) m=12,..

>From the previous we obtair the Corollary:
1 F(,)<1

o :{0 Fjpj)=1

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023
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2 m PN, =m}
m=1

=S mEG ) (1= F )
| | m—1 —
= (1-F(.)) = 2 mx

, |x| <1
(1=F(.p) (1-F(i.)) = (1-x)*

o If F(j,j)=1= N, =+ w.p.l. Therefore, if X, =j= E[N,;]=+o0
o If F(j,j)<1 then N, follows geometric distribution with probability of success
p=1-F(j,j).Hence, E[N]=-

=1
1=F(j,])

M105 - AvdAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2023
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Let |R(i, /) = E,[N,] (R is called the potential matrix of X)
Then, — — = %
R(.J) = o R(,j)=F(, ) R(j,j)+(1-F(i, )0
R(i, j)= F(i, /) R(j,j) . (i#)
| Computation of R(i, /) first and then F (i, ) |
Define:
LX< L, X,(o)=j
1,(k) = 1(X (@) =
) {0, k?tj:> s (@) {0, X, () # ]
Then,

Ni(@=3" 1,(X,@)
RG:)= B Yo = T B~ X0, RiX, = = D PG )

In matrix notation:
R=I+P+P +---=>RP=PR=P+P +--=R-1

from which we obtain
RUI-P)=(I-P)R=1

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 33

Classification of states

X: MC, with state space E, transition matrix P
T : The time of first visit to state j
N : The total number of visits to state j

Definition
% State j is called recurrent if P {T <o} =1

& State j is called transient if P {7 =oo} >0
% A recurrent state j is called null if £,[7] =00
% A recurrent state j is called non-null if £,[T] < oo

& A recurrent state j is called periodic with period &, if §>2 is the greatest
integer for which

PAT =no forsomen 21} =1

M105 - AvdAuon kai MovteAotroinon AikTOwy - lwavvng Zraupakdkng (EKIMA) - 2023 34
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RG.J) = 1/{(1-F(.J) }

e If j isrecurrent then starting at j the probability of returning to j is 1.

F(j,)=1= R(j, /)= E|[N,]=+® < P {N, =40} =1

e If j is transient then there exists a positive probability 1—F(j,j) of never
returning to ;.

F(j,))<1= R(j,j)=E|[N;]<0o<= P{N, <o} =1
In this case R(i,j)=F (@i, )R(J,j) < R(j,j) <o and since R(i,j)= Zﬂ P"(i, )

we conclude that

lim P" (i, j) — 0

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 35

Theorem:
& If j transient or recurrent null (for which £,[T]= o) then

Viek, lim P"(i, j)) > 0

& If j recurrent non-null then

2(j)=lmP"(j,j)>0 and VieE, LmP'G,j)=FG,))z())

& If j periodic with period &, then a retutrn to j is possible only at steps numbered
J,20,309,..

P"(j,j) = P{X, = j} >0 onlyif n e {0,5,25,..}
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Recurrent non-null | Recurrent null Transient
PAT <oo}=1 PA{T =0} >0
E[T]<wo | E[T]=o

F(./)<1=RG,J)=E|IN,]<w

F(j,j))=1=R(j,j)=E [N ]=+0<= P{N, =+0} =1
(U, J) () =E;[N;] 7 } < P{N,<oo}=1

z(j)=lmP"(j,j)>0 and ViekE,

_ VieE, lLimP"(i,j)—0
lim PG, ) = F G, j)()) b

& A recurrent state j is called periodic with period, if §>2 is the greatest integer
for which
PAT =nd for some n 21} =1

& If j periodic with period &, then a return to j is possible only at steps numbered
5,206,306, ..

P'(j,j)=P{X, = j}>Oonlyif n e {0,5,25,..}
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We say that state j can be reached from state i i — j, if 3n>0: P"(i, j) >0
i—j, iff F(i,j)>0
Definition:
e A set of states is closed if no state outside it can be reached from any state in it.
A state forming a closed set by itself is called an absorbing state

L]
e A closed set is called irreducible if no proper subset of it is closed.
e A MC is called irreducible if its only closed set is the set of all states

Comments:

& If j is absorbing then P(j,j)=1.

& If MC is irreducible then all states can be reached from each other.

& If C={c,c,,~}€E is a closed set and Q(, )= P(c,c;), ¢,c;€C, then Q is a
Markov matrix.

& Ifi>jand j >k theni—k.

To find the closed set C that contains i we work as follows:
e Starting with i we include in C all states j that can be reached from i: P(i, j)>0.
e We nextinclude in C all states & that can be reached from j: P(j,k)>0.
e We repeat the previous step
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Example: MC with state space E = {a,b,c,d,e} and transition matrix

I RN}
2 2
0 N, M
4 4
P (DT a0
3 3
114,14
4.3 4
1
_0_01
3 3 3

b 4+—-————b—8—————>

Comments:
e Closed sets: {a,c,e} and {a,b,c,d,e}

e There are two closed sets. Thus, the MC is not

irreducible.

e

M105 - AvdAuon kal MovreAomroinan AIKTOwY - lwdvwng Zraupakdkng (EKMA) - 2023 39
Example: MC with state space E = {a,b,c,d,e} and transition matrix
1 1 Comments:
T 108 5 00 40 o Closed sets: {a,c,e} and {a,b,c,d, e}
2 2 e There are two closed sets. Thus, the MC is not
Ol o BEh irreducible.
4 4 e If we delete the 2" and 4” rows we obtain the
P=lo o % 0 % Markov matrix:
11
il 1 = =y
oo “a
w22
o=[0 < =
L e e 33 L Iy P
T, N L 1 %
3 L3, 3 1% D)
0 — = 0 0
If we relabel the states 1=a, 2=c, 3=¢, 4=b and 33
5=d we get = noSk -k 0 0
3+ 3
1" 8
0o 0 0 — =
4 4
1 1 1
SN D)
4 2 4
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Lemma If j recurrent and j >k = k — j. Thus, F(k,j)=1.

Proof: If j — k then k is reached without returning to j with probability a. Once k

is reached, the probability that j is never visited again is 1— F(k, j) . Hence,
1-F(j,j)2a(l-F(k, /) 20

But j is recurrent, so that F(j,j)=1= F(k,j)=1

A Asaresult: If j — k but k- j, then j must be transient.
Theorem: From recurrent states only recurrent states can be reached.

Theorem: In a Marcov chain the recurrent states can be divided in a unique manner,
into irreducible closed sets C,, C,, ..., and after an appropriate arrangement:

P, 0 ORd-EY- THO
0 B ORI ()
P={0 0 B - 0
Q1 Qz Q3 g ()
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Theorem: Let X an irreducible MC. Then, one of the following holds:
e All states are transient.
o All states are recurrent null
e All states are recurrent non-null
o Either all aperiodic or if one is periodic with period &, all are periodic
with the same period.

Proof: Since X is irreducible then j— k& and k& — j, which means that Jr,s:
P'(j,k)>0 and P'(k,j)> 0. Pick the smallest r,s and let § = P"(j,k)P'(k,)).
e If k recurrent = j recurrent.
e If k transient = j transient. (If it was recurrent then & would be recurrent)
e If k recurrent null then P"(k,k) > 0 as m — o0. But
P (kk) 2 BP(j, ) = P"(j, j) =0
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Corollary: If C irreducible closed set of finitely many states, then A recurrent null
states.

Proof: If one is recurrent null then all states are recurrent null.
Thus, lim, . P"(i,j) =0, Vi, je C.But,
VieCnz0,Y P'(i,j)=1=1lim) P"(,j)=1
JjeC n—>o© =@
Because, we have finite number of states
Limy Y PP (i) =eplind P2 (isef) =0

jeC JjeC

Corollary: If C is an irreducible closed set with finitely many states then there are no
transient states
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MC with Finite number of states - algorithm

Identify irreducible closed sets.

All states belonging to an irreducible closed set are recurrent positive
The rest of the states are transient

Periodicity is checked to each irreducible set
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Example:
The irreducible closed sets are {1,3}, {2,7,9} and {6}. The states {4,5,8,10} are

transient. If we relabel the states we obtain

1
=l
(D—()—4) Py
1 0
O—Q © ol
= 2.0
(10)—=(2 )—=(7) 3he]
1
o il
Fre 4 4
1 0 0
00 0 00 O O0OT1TUO0TUO0
00 0 0 O gLy d 0 0
3= 8y 8
0 0 l 0 0 O 3 0 L
4 4 4 4
0 0 0 L 0 0 O 1 0 1
3 3 3
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Example: Let N, the number of successes in the first » Bernoulli trials. As we have

seen
p j=i+l
P(i>j)=P{Nn+1:j|Nn:i}: q J:l
0 otherwise
Thus,
g p O
0
p— q P
0 0 ¢

Vj we have j— j+1 but j+1-A j. This means that ;j is not recurrent => j is
transient.
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Example: Remaining lifetime

X, (0)-1 X, (0)=1
Remember: X, (o)=
Z (0)-1 X (0)=0
from which we obtain:
] * . ; . qoil - ysi=
i>1 P(l,j)=P{Xn+1=JXM=J}=P{XH—1=J|XM=J}={ =
0 j=i-1
i=0 R(OS R 12 (S 0y — Pl S i)
ZP{ZnH =j+1}=pj+l
b D D
IO
P={0 1 0
0o 0 1
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b P P
=N OR()
= RO R ()
0 0 1
>From state 0 we reach state j in one step. From j we canreach j -1, j-2, .., 1,

0. Thus, all states can be reached from each other, which means that the MC is
irreducible. Since, P(0,0) >0 the MC is aperiodic. Return to state 0 occurs if the

lifetime is finite:
Pl (O ) SR |
7 J

Since state 0 is recurrent, all states are recurrent.
If the expected lifetime:

D ip; =+
7
then state 0 is null and all states are recurrent null.
If the expected lifetime:
2 ip; <
i

then state 0 is non-null and all states are recurrent non-null.
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MC with Infinite number of states - algorithm

Theorem: Let X an irreducible MC, and consider the system of linear equations:
v())=) v()PG,j), JjeE
icE
Then all states are recurrent non-null iff there exists a solution v with

> Gl

JEE

Theorem: Let X an irreducible MC with transition matrix P, and let O be the
matrix obtained from P by deleting the & -row and k& -column for some k € E. Then
all states are recurrent if and only if the only solution of
W)= 06 Dh(),  0<h@<L,  iek,
JeEy
is h(i)=0 forall ic E,. E,=E—{k}.
« Use first theorem to determine whether all states are recurrent non-null or not.
¢ In the latter case, use the second theorem to determine whether the states are
transient or not.
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Example: Random walks.

- o o
R O =
=TS

o All states can be reached from each other, and thus the chain is irreducible.

e A return to state 0 can occur only at steps numbered 2,4,6,... Therefore, state 0 is
periodic with period 6 =2.

e Since X is irreducible all states are periodic with period 2.

o Either all states are recurrent null, or all are recurrent non-null, or all the states are
transient.

Check for a solution of v =vP.

Vo = gy
Vi=Votqv,
V, =PV, tqvs
V3= pv,tqv,
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Hence,

Any solution is of the form

If p<gq,then p/g <1 and

&

-1
< 1& p]j 2q
v.=[14+— = Yp=—14
2" [ q;(q WL, o

If we choose v, =% then Zvj =1and

2q
1 4=l
2q q)\q

In this case all states are recurrent non null

V), =

v
—_
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If p>gq either all states are recurrent null or all states are transient. Consider the
matrix (excluding state 0)

o o
R o
=JS

The equation /& = Qh gives (4, = h(i))
i =il
el +[q] +...+1+1 hl
p p
o If p=¢q then A =ih forall i>1 and the only way to have 0< 4, <1 for all i is by

choosing 4, =0 which implies A =0 that is all states are recurrent null.
o If p> g, then choosing  =1-(g/p), we get

s
p

which also satisfies 0 < 4, <1. In this case all states are transient.
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Calculation of R and F

& R(i,j)=E[N,] Expected number of visits to state ;.
& F(i, j) = The probability of ever reaching state ; starting at ;.

J Recurrent state: F(j,j)=1= R(j,j)=o

0 F(@j )=0

RG.))= FG. ))R(.J) R(i,j)z{_m e

j Transient/ i Recurrent state: F(i,j)=0= R(;,j)=0

i,j Transient

Let D = { the transient states }, O(, j) = P(i,j), SG,j)=R(,j), i,jeD.

K 0
Then P= = P" =
L Q

Kt
L, o

DK™ 0
D3 )

M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023

Hence, R= i Pis

m=0

m=0

:S=§1Q”’=I+Q+Q2+--~

53

Computation of S
S=1+0+0*+-=
SO=0S=0+Q*+---=S-I=
U-0)8=1, SU-0)=1

Proposition: If there are finitely many transient states S = (I — Q)™

& When the set D of transient states is infinite, it is possible to have more than one

solution to the system.

Theorem: S is the minimal solution of (/ -Q)Y =1, Y >0

Theorem: S is the unique solution of (/ —Q)Y =1 if and only if the only bounded

solution of &= Qh is h=0, or equivalently

h=0h,0<h<leh=0
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Example: Let X a MC with state space E ={1,2,3,4,5,6,7,8}

04 03 03 | \
0. 06 04 | ‘ ={1,2,3} are recurrent positive
05 05 0. | | aperiodic.
g = A TR A TS = {4,5} are recurrent positive
P= =@ s aperiodic.
| 0.8 02 | ]
=gy SRR gy bl - g ={6,7,8} are transient
0. 0. o | | 04 06 0 (reaching states 1,2,3 only)
04 04 0. | | 0. 0. 02
0.1 0. 03 | | 06 0. O
04 06 0. 06 -06 0.)'
0=[0. 0. 02|=>8=(/-09)"'=| 0. 1. -02
0.6 0. O -0.6 0. Ik,
M105 - AvéAuon kai Movtehotroinon AikTOwy - lwdvvng Ztaupakdkng (EKMA) - 2023 3

j recurrent, can be reached from i j transient, i recurrent

J, i transient

j recurrent j transient
A
( (N | SRR
S | | 0 0 0
0 o0 o0 | | 0 0 0
i recurrent< | | SRR
-
g | S | O 0 0
R=
= e W e A
125735 5
w o w | |
66 66 66
i transient < | o o | | 150 B s
66 66 66
5 A5 TS
o0 oD o | | e
s 66 66 66
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Computation of F(i, j)
& i, ] recurrent belonging to the same irreducible closed set

F(@,j)=1

% i, j recurrent belonging to different irreducible closed sets
F@,j)=0
& I,j transient Then R(7, j) <o and

> 1 e 100!
Flyog =]t s gl By by
e S T

% i transient, j recurrent ???7?

Lemma: If C is irreducible closed set of recurrent states, then for any transient state i :
F(@,j)=F(ik)
forall j, k €C.

Proof: For j,k e C= F(j,k)=F(k,j)=1. Thus, once the chain reaches any one of the
states of C, it also visits all the other states. Hence, F'(i, j) = F'(i,k) is the probability of
entering the set C from i.
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Let Lump all states of C; together to make one absorbing state:
1
R
1
B
L 1 . d :
P= P, P= N , b()=> P(i,k),ieD

keC,

9 0 O 0

& A0 L .
P:(B QJ’ B:[bl bm]’ B(l,])—k;P(l,k), 1eD

[1 0

a7 Qn], B,=(I+Q+Q*++0" "B

B, (i, j) is the probability that starting from 7, the chain enters the recurrent class C,

by step n
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Define:

n—o

G=limB, =[2Qk}3 =SB
k=0

% G(i, /) is the probability of ever reaching the set C; from the transient state i:
(F@J))

Proposition: Let O the matrix obtained from P by deleting all the rows and columns
corresponding to the recurrent states, and let B be defined as previously, for each
transient i/ and recurrent class C,.

. Compute S
. Compute G =SB
. G(,j)=F(@,k), VkeC,.
o If there is only one recurrent class and finitely many transient states, then things are
different.
In this case, it can be proved that:
G=1=F(@,j) =1, VieC
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Example: Let X a MC with state space E = {l,2,3,4,5,6,7,8}

04 03 03 | |
0. 06 04 | |
OF e O3 =@} " | |
- | — = = ) - - &
(RS M|
P=
(RO 02|
Ses BT = e Pt L Lt
0 @ S0 | 04 06 O.
04 04 0. | [0 SRS ONN0'2
OR1NE () SN 3| [ENOTC RN ()
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i, j recurrent belonging to the same irreducible closed set

i, j recurrent belonging to different irreducible closed sets

g i transient
J recu/\rrent 4 e
7 N
7 1 1 1 B 0 0 0 Jj transient, i recurrent
1 1 1 | RSO | 0 0 0
11 1 | e 0 0 0
i recurrent < EViEN B gl EV e - IR
BN | 1 1 | o 0 0
F= ! - 5
Ui || 1 1 | 0 0 0
\ - - = | - -1 - - - J, @ transient
BN | 0 0 | 0472 1. 0.20 ’
i transient BN | 0 0 | 012 042 020 “PTITLTn
IN1E | 0 0 | 060 0.60 0.12 s
F(i, j) =
R(j. 1)

one (reachable) recurrent class and finitely many transient states
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Example:
05 0.5
0.8 0.2
0
0. 04 0.6
A 0 1 0 0
/2= il "5 (e a(). = /P

1 0.

0.

0.1 05 03 0.1
02 02 02 04

0.1 0. 02 02 0.1 03 0.1
0.1 0.1 0.1 0. 0.1 02 04
1 1
1 1
Thus, N ol Al
o [0 b (505~ 025 S AL
g | R R . ) T 57 30 I o ]
02 02 08 0.8 0.8 1 l
1.50 0.25)0.1 0.5 0.2 0.8 SR/
G=S-B= =
050 1.75)l02 02) (04 0.6 8040 06 H0 e o
SRR
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Recurrent states and Limiting probabilities

« Consider only an irreducible set of states.
Theorem: Suppose X is irreducible and aperiodic. Then all states are recurrent non-
null if and only if

()=, 7()PG, ), jeE, Y x(j)=1

icE Je€E

has a solution 7. If there exists a solution =, then it is strictly positive, there are no
other solutions, and we have

z(j)=1limP"(i, j),Vi,j € E

Corollary: If X in an irreducible aperiodic MC with finitely many states (no-null
states, no transient states), then

n-P=m, m-1=1

has a unique solution. The solution 7 is strictly positive, and
z(j)=lim,_ P"(i,)), Vi, .
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% A probability distribution 7z which satisfies 7 =7-P, is called an invariant
distribution for X .

& If 7 is the initial distribution of X', thatis, P{X, = j} =7(j), je€FE
then 120% == Zi 7(@)P"(i,j)=n(j),forany ne E
Proof: 7=n-P=n-P’=---=71-P"

Algorithm: for finding lim, . P"(i, /)
e Consider the irreducible closed set containing j
e Solve for z(;). Thus, we find lim,_,_ P"(j, )
e Forevery i (not necessarily in E)

lim P" (i, j) = F (i, ) lim P"(j, /)
Compute F(i,j) first. Then, find lim, , P"(i,j)
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Example:
03 05 0.2
E={1,2,3}, P={0.6 0. 04
0. 04 O.

z1) = z(1)0.3 + #(2)0.6
zP=r = zn(Q2) 7(D)0.5 + + 7(3)0.4
7(3) 7(1)0.2 + 7#(2)04 + 7x(3)0.6

rl=1

System’s Solution:

6 7 10
2 3RRPSNED3
6 7 10 oy AP b 6 7 10
ﬂz(— = —j SP=lmPGj)=|—= — —
DRSNS n—>o 03" 08 23
6 7 10
PR 23 OB
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Example:
02 0.8
0.7 03
03 05 02
E={1,2,3,4,5,6,7}, P= 0.6 0. 04
0. 04 0.6
0. 01 01 02 02 03 0.1
0.1 01 01 0. 0.1 02 04
il 03 05 02
D= BT :;rl=[l ij, P=/06 0. 04 :@:(i . Q]
0.7 03 IISRTS D23 823
0. 04 0.6
Compute F{(i, /) first. Then, find lim,__ P'(7, ] (for the transient at the bottom)
- Compute S F(6,1) --- F(6,5) > 02 02 08 0.8 038
€ Compily G=8 F(7,0)) - F(7,5]| (04 04 06 06 0.6
. GG, j)=F (k). VkeC,.
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Thus,
8
515
8
TERTS
7 10
23 23 23
P =lim P’ = el L
i) 203 TRy 3
6 7 10
23 23 23
(for the transient at the bottom) e S e 0. 0.
ISRl RSO IR0 SERS?S
lim P* (0, j) = F (@, ) lim P"(}, ) Pl e s W o
IS S 2328 23
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Example:
q p (X .irile.ducible aperiodic (since state 0 is
. g 0 p aperiodic))
Random walks: P =
0 g 0 p
I
+ q
Ty = TqdTmq D)
4 p
o= mprmg|t M = (_pJ/q:Z G =l £ r’
= q TS|t S S
T, = mMPptTq B o » 9 49
q q q

& If p>g:nosolutionof r=7-P, -1=1

& 1f p<g:lim,_, PG, j)=(1 _5)(3)1

q
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Example: Remaining lifetime

b P P
1 0 O
P
0O 1 0
Ty, = TP, + 7T, Vo = 1
" J= gD Bt T T Vi i 1-p,

T, = Lzt tm v, = l1-p-p,

Thus,

©

ZV./ =P+ Pt Pt )+ (Dt P+ )+ (Do) +oo

Jj=0

=P +2p, +3pitee=m

& m=E[Z,] is the expected lifetime.

& If m = oo then all states are recurrent null and lim, . P"(i, j) =0
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Interpretation of Limiting Probabilities
Proposition: Let j be an aperiodic recurrent non-null state, and let m(j) be the

expected time between two returns to j . Then,
ol ) 1
2o A g oo
n—wo m( ])
The limiting probability 7(/) of being in state j is equal to the rate at which j is

visited.
Proposition: Let ; be an aperiodic recurrent non-null and let z(j) defined as
previously. Then, for almost all @ € QO

Sl i
hmﬁglj()(m(w))—”(])

n—w

. If f is a bounded function on E, then

i_ fx,)=3 f(j)i_ e

JeE

Corollary: X irreducible recurrent MC, with limiting probability 7. Then, for any
bounded function f on E:

lm——3 f()=m-f, 7S =T a()I0)

n—wo p ek
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