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Abstract

A stochastic model is introduced that accurately models the message delay in mobile ad hoc networks where nodes
relay messages and the networks are sparsely populated. The model has only two input parameters: the number
of nodes and the parameter of an exponential distribution which describes the time until two random mobiles
come within communication range of one another. Closed-form expressions are obtained for the Laplace–Stieltjes
transform of the message delay, defined as the time needed to transfer a message between a source and a destination.
From this we derive both a closed-form expression and an asymptotic approximation (as a function of the number
of nodes) of the expected message delay. As an additional result, the probability distribution function is obtained for
the number of copies of the message at the time the message is delivered. These calculations are carried out for two
protocols: the two-hop multicopy and the unrestricted multicopy protocols. It is shown that despite its simplicity, the
model accurately predicts the message delay for both relay strategies for a number of mobility models (the random
waypoint, random direction and the random walker mobility models).
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1. Introduction

In mobile ad hoc networks (MANET), a mobile (or simply a node) can only send data to another node if
both nodes are within transmission range of one another orin contact. Two nodes are within transmission
range of one another if the distance between them does not exceedr.

The fact that two nodes are in contact is of course not enough to ensure the success of a transmission,
since many phenomena may occur during the transmission and cause it to fail (interference, physical
obstacles, power problems, etc.). Message relaying is a technique that reduces message latency by using
intermediary nodes to forward the message.

Routing protocols using relay nodes[9,10,17]have been proposed that increase the message delivery
ratio in mobile ad hoc networks. These protocols operate on astore-carry-forward mode to take advantage
of node mobility to improve node connectivity, and ultimately the message throughput. When information
is available (node movement, node position, etc.) these protocols may use it in a static[17] or in a dynamic
[9] way. The concept of relay nodes can also be used when no information on the nodes is available
[10].

Evaluating the performance of relay protocols (message delivery ratio, message latency, throughput,
etc.) is a difficult task due to the inherent complexity of mobile ad hoc networks, particularly the random
nature of both the movement of the nodes and of the demand (traffic). The performance of mobile ad hoc
networks is in general studied via lengthy and complex simulations, for a limited number of mobility
models, including therandom waypoint mobility model [3] or therandom direction mobility model [1,8].

In this paper we introduce a simple stochastic model to evaluate the performance of relay protocols for
MANET. The model is generic and has only two input parameters: the number of nodes in the network
and the intensity (λ) of some identical and independent Poisson processes. In particular, the model does
not require knowledge of the stationary distribution of the location of the nodes as input.

These processes model instances, calledmeeting times, at which any pair of nodes come within trans-
mission range of one another. Transmissions between two nodes can only take place at meeting times
and are assumed to be instantaneous. The latter assumption models the situation where the transmission
time of a message is very small with respect to the inter meeting times. Therefore, the random nature
of a MANET is captured in our model through a finite number of these independent and homogeneous
Poisson processes.

The selection of the intensityλ will be discussed in Sections3 and 4. The model is used to characterize
the message delay between two arbitrary nodes – hereafter called thesource node and thedestination
node – for two relay protocols and for three mobility models.

The two relay protocols are thetwo-hop multicopy and theunrestricted multicopy protocol. In the
two-hop multicopy protocol the source node copies the message to all the nodes it meets along its route,
including of course the destination node. Any node which has received a duplicate copy of the message
from the source node may only forward it to the destination node. Note that this is different from the
two-hoprelay protocol proposed in[7]: there a packet is relayed to another node (instead of being copied).

In the unrestricted multicopy protocol the source node copies the message to all the nodes it meets (as
in the two-hop multicopy protocol), but in this protocol any node that carries the message may in turn
copy the message to all the nodesit encounters, alongits trajectory.

The three mobility models that we will consider in this paper are the random waypoint, the random di-
rection, and the two-dimensionalrandom walker mobility model. All three models and their mathematical
properties will be described in Section3.1.
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The characterization of the message delay in MANET has received some attention, although explicit
expressions are seldom obtained for two-dimensional mobility models. In[14] it is shown that, under
the two-hoprelay protocol, the expected message delay is of the ordernTp(n) for the random waypoint
mobility model on a sphere (wheren is the number of nodes per unit area andTp(n) is the transmission
time of a message). With nodes moving as independent Brownian motions on a sphere, it is shown in
[15] that the expected message delay is of the order log2(n)/σ2, whereσ2 is the variance parameter
of the Brownian motion. In[6] the expected message delay under the unrestricted multicopy protocol is
computed for a uni-dimensional network topology, where the nodes move in adjacent segments according
to independent and reflected Brownian motions.

The paper is organized as follows: the stochastic model is introduced in Section2.1, then we compute in
Section2.2the Laplace–Stieltjes transform (LST) of the message delay (Proposition 1). In this proposition,
we also obtain the distribution of the number of copies of the message at the time the message is delivered
to the destination node. InProposition 2we calculate the expected message delay in closed-form and also
find an asymptotic for a large number of nodes. These calculations are done for the two relay protocols.

In Section3, the expected message delay and the distribution of the number of copies of the message
found in Section2 are compared to results obtained by simulations. The simulations have been carried
out for each of the six combinations of the two relay protocols and the three mobility models. The
simulation results are very close to the analytical results. We observed discrepancies only when the node
transmission range is large with respect to the size of the area in which the nodes move. In addition, an
explicit expression is given for the parameterλ for the random waypoint and random direction mobility
models, and it is shown that it hebaves as a linear function of the transmission range.

The model assumptions have been validated in Section3 in the absence of interference (a situation that
will typically occur when the node density is small and the communication radius of the nodes is small
with respect to the area in which the nodes move). One way to incorporate interference into our model
is to thin the meeting time sequences: with some probabilityp (resp. 1− p) a transmission occurring at
a meeting time will be a success (resp. failure). Due to the fact that a thinned Poisson process is again a
Poisson process, it is enough to replaceλ by λp, with p the probability that a communication fails due to
interferences. We will not pursue the derivation of the value ofp.

On the other hand, we may also argue that the communication radius of the nodes must be small enough
so that interferences remain at an acceptable level. It has been shown in[7] that the transmission range
of the nodes should be of the order 1/

√
N for the two-hop relay protocol, in order to maintain a constant

capacity per node (withN the number of nodes per unit area). In Section4 it will be shown how our model
can be used to compute the expected message delay for the two relay protocols considered in this paper
when the transmission range is a decreasing function ofN.

A word on the notation: given a functiong(N), we writef (N) = O(g(N)) if |f (N)/g(N)| is bounded
from above asN → ∞ andf (N) = o(g(N)) if f (N)/g(N) → 0 asN → ∞.

2. The stochastic model

We consider a network withN + 1 identical mobile nodes. There is asingle message to be delivered
by a source node to a destination node. Intermediary nodes can be used as relay nodes. The goal is
to determine the distribution of the message delay and the distribution of the number of copies of the
message at the time the message is delivered to the destination node.
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We first introduce the model; then we use it in Section2.2to evaluate the performance of the two-hop
multicopy and the unrestricted multicopy protocols.

2.1. Definition of the model

An analytical model that would carefully take into account the main features of a MANET (transmission
range, mobility pattern, interferences, fading, etc.) would be mathematically intractable. Instead, we
propose a model where the impact of these features are captured through a single parameterλ.

Let 0 ≤ ti,j(1) < ti,j(2) < · · · be the successivemeeting times between nodesi and j (i �= j). Define
τi,j(n) := ti,j(n + 1) − ti,j(n), then-th inter-meeting time between nodesi andj.

Transmissions between two nodes may only take place at meeting times and are assumed to beinstan-
taneous. The latter assumption corresponds to the situation where the transmission time of a message
between two nodes is negligible with respect to the time it takes the two nodes to meet one another (this
is the case when the transmission radius is small with respect to the size of the area).

We assume that if a transmission takes place between nodei andj (at some meeting timeti,j(n)), then
it will be successful. Assume that nodei carries the message just before timeti,j(n). Under the two-hop
multicopy protocol nodei will transmit (a copy of) the message to nodej at timeti,j(n) if i is the source
node or ifj is the destination node. Under the unrestricted multicopy protocol nodei will always transmit
the message to nodej at timeti,j(n).

Throughout the paper the following assumption will be made:

(A) the processes{ti,j(n), n ≥ 1}, 1 ≤ i, j ≤ N + 1, i �= j, are mutually independent and homogeneous
Poisson processes with rate1 λ > 0. Equivalently stated, the random variables (rvs){τi,j(n)}i,j,n are
mutually independent and exponentially distributed with mean 1/λ.

We introduce:

• T2 (resp.TU), the message delay under the two-hop (resp. unrestricted) multicopy protocol, defined as
the time needed to send the message (or a copy of the message) from the source to the destination;

• N2 ∈ {1, 2, . . . , N} (resp.NU ∈ {1, 2, . . . , N}), the number of duplicate copies of the message in the
network (excluding the original message but including the message at the destination node) at the time
the message is delivered to the destination node.

For θ ≥ 0, letT ∗
2 (θ) := E[e−θT2] andT ∗

U(θ) := E[e−θTU] be the LST ofT2 andTU, respectively.

2.2. Performance of relay protocols

Proposition 1gives, for each relay protocol, the LST of the message delay and the distribution of the
number of copies.

1 Without restrictions we can letλ depend on the number of nodes in the network. This is discussed in Section4.



214 R. Groenevelt et al. / Performance Evaluation 62 (2005) 210–228

Proposition 1 (LST of message delay).Under the two-hop multicopy protocol

T ∗
2 (θ) =

N∑
i=1

i
(N − 1)!

(N − i)!

(
λ

λN + θ

)i

(1)

and

P(N2 = i) = i

Ni

(N − 1)!

(N − i)!
, i = 1, . . . , N. (2)

Under the unrestricted multicopy protocol

T ∗
U(θ) = 1

N

N∑
i=1

i∏
j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
(3)

and

P(NU = i) = 1

N
, i = 1, . . . , N, (4)

that is, the number of copies is uniformly distributed over {1, . . . , N}.
Proof. For both the two-hop and the unrestricted multicopy protocols the proof is based on modeling
the number of copies in the network as an absorbing finite-state Markov chain. The transition rates of
these Markov chains will differ for each protocol.

For each protocol the Markov chain takes its values in{1, 2, . . . , N + 1}. The Markov chain is in state
i = 1, 2, . . . , N when there arei copies of the message in the network including the original message,
and it is in stateN + 1 when the message has been delivered to the destination node. Note that states
1, 2, . . . , N are transient states andN + 1 is an absorbing state.

We provide a separate proof for equations(1)–(2) and (3)–(4).
The transition diagram of the Markov chain corresponding to the two-hop multicopy protocol is given

in Fig. 1. Recall that under the two-hop multicopy protocol only the source node distributes copies of
the message to nodes that come within its transmission range. Therefore, when there arei copies in the
network, then either a new copy is sent to theN − i nodes which do not have a copy yet, which occurs at
the rateλ(N − i) and triggers a transition fromi to i + 1, or one of thesei copies reaches the destination
node, which occurs at the rateλi and triggers a transition fromi to N + 1. This explains the transition
diagram inFig. 1.

The transition fromi toN + 1 occurs with the probabilityiλ/((N − i)λ + iλ) = i/N, and the transition
from i from i + 1 occurs with the complementary probability (N − i)λ/((N − i)λ + iλ) = 1 − i/N.

Proof of (1) and (2)

Fig. 1. Two-hop multicopy protocol: transition diagram of the Markov chain for the number of copies.
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The sojourn timeSi in statei = 1, 2, . . . , N is exponentially distributed with intensityλN (the sum of
transition rates out of statei). Moreover,S1, . . . , SN are mutually independent random variables.

By conditioning on the state of the Markov chain just before its enters stateN + 1, or equivalently by
conditioning on the number of duplicate copiesN2 just after the message hits its destination, we have

T ∗
2 (θ) =

N∑
i=1

E[e−θT2|N2 = i]P(N2 = i) =
N∑

i=1

E[e−θ
∑i

j=1
Sj |N2 = i]P(N2 = i). (5)

As mentioned earlier, 1− j/N (resp.j/N) is the probability of jumping from statej to statej + 1 (resp.
N + 1). Therefore,

P(N2 = i) = i

N

i−1∏
j=1

(
1 − j

N

)
= i

Ni

(N − 1)!

(N − i)!
, (6)

which establishes(2).
When in statej = 1, 2, . . . , N, the Markov chain can either enter statej + 1 after a timeSj,1 that is

exponentially distributed with intensity (N + 1 − j)λ, or enter stateN + 1 after a timeSj,2, independent
of Sj,1, and exponentially distributed with intensityjλ. Observe thatSj = min{Sj,1, Sj,2}. Moreover,

P [Sj,1 < x|Sj,1 < Sj,2] = P [Sj,2 < x|Sj,1 > Sj,2] = P(Sj < x) = 1 − e−λNx (7)

as a consequence of the exponential distribution. Therefore

E[e−θ
∑i

j=1
Sj |N2 = i] = E[e−θ(

∑i−1

j=1
Sj,1+Si,2)|Sk,1 < Sk,2, k = j, . . . , i − 1, Si,1 > Si,2]. (8)

From(7), (8)and the fact that the rvs{Sj,k}j=1,...,N,k=1,2 are mutually independent, we readily find

E[e−θ
∑i

j=1
Sj |N2 = i] =

i∏
j=1

E[e−θSj ] =
(

λN

λN + θ

)i

. (9)

Putting(5), (6) and (9)together yields

T ∗
2 (θ) =

N∑
i=1

i
(N − 1)!

(N − i)!

(
λ

λN + θ

)i

,

which proves(1).
The transition diagram of the Markov chain associated with the unrestricted multicopy protocol is

displayed inFig. 2. Under this protocol, each node which has a copy of the message is allowed to distribute
it to a node which does not have a copy and which comes within its transmission range. Therefore, when
there arei copies of the message in the network a new copy is created at the rateλi(N − i) (transition
from i to i + 1) and one of thesei copies reaches the destination node at the rateλi (transition fromi to
N + 1), as depicted onFig. 2.

The chain jumps from statei to statei + 1 with probability (N − i)/(N + 1 − i) and it jumps from state
i to stateN + 1 with probability 1/(N + 1 − i). The sojourn timẽSi in statei is exponentially distributed
with intensityλi(N + 1 − i) (obtained as the sum of the transition rates going out statei).
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Fig. 2. Unrestricted multicopy protocol: transition diagram of the Markov chain for the number of copies.

Proof of (3) and (4)
By conditioning on the number of duplicate copiesNU , we have

T ∗
U(θ) =

N∑
i=1

E[e−θ
∑i

j=1
S̃j |NU = i]P(NU = i) (10)

with

P(NU = i) = 1

N + 1 − i

i−1∏
j=1

N − j

N + 1 − j
= 1

N
, (11)

which proves(4). Similarly to(9) we have

E[e−θ
i∑

j=1

S̃j|NU = i] =
i∏

j=1

E[e−θS̃j ] =
i∏

j=1

λj(N + 1 − j)

λj(N + 1 − j) + θ
,

which, together with equations(12) and (13), proves(3). �
Proposition 2gives an explicit expression, and an asymptotic for largeN, for the expected message

delay for each relay protocol. This result shows that for each protocol the expected message delay is a
linear function of the expected inter-meeting time 1/λ, and changing the valueλ does not have any impact
except for a time scaling.

Proposition 2 (Expected message delays).Under the two-hop multicopy protocol, the expected message
delay is given by

E[T2] = 1

λN

N∑
i=1

i2(N − 1)!

(N − i)!Ni
= 1

λ

(√
π

2N
+O

(
1

N

))
. (12)

Under the unrestricted multicopy protocol, the expected message delay is

E[TU] = 1

λN

N∑
i=1

1

i
= 1

λN

(
log(N) + γ +O

(
1

N

))
, (13)

where γ ≈ 0.57721is Euler’s constant.

Proof. SinceE[T2] = − dT ∗
2 (θ)
dθ

∣∣∣
θ=0

,E[T2] can be derived at once from(1). For the sake of clarity the
proof of the asymptotic expansion of(12) is forwarded toAppendix A.
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Similarly, we find by differentiating(3) w.r.t. θ, and then by settingθ = 0, that

E[TU] = 1

λN

N∑
i=1

i∑
j=1

1

j(N + 1 − j)
= 1

λN(N + 1)

N∑
i=1

i∑
j=1

(
1

j
+ 1

N + 1 − j

)

= 1

λN(N + 1)

N∑
j=1

N∑
i=j

(
1

j
+ 1

N + 1 − j

)
= 1

λN

N∑
j=1

1

j
,

which is the first part of(13). This last summation is known as the harmonic numbers. Its asymptotic
expansion[13, p.186] is

∑N
i=1

1
i

= log(N) + γ +O
(

1
N

)
, whereγ is Euler’s constant. This gives the

second part of(13)and concludes the proof. �
The second moments of the message delay can be found in[5, Section 3.2.2]. The next result gives the

expected number of copies of the message at the time the message is delivered.

Corollary 3 (Expected number of copies).The expected number of copies under the two-hop multicopy
protocol is given by (cf. (2) and (12))

E[N2] = 1

N

N∑
i=1

i2

Ni

N!

(N − i)!
=
√

πN

2
+O(1). (14)

Hence E[N2] = λNE[T2]. The expected number of copies under the unrestricted multicopy protocol is
(cf. (4)) E[NU] = N+1

2 .

The relative performance of the two-hop multicopy and unrestricted multicopy protocols can be captured
through the ratiosE[TU]/E[T2] andE[NU]/E[N2] given by (cf.Proposition 2andCorollary 3)

E[TU]

E[T2]
= N

∑N
i=1

1
i∑N

i=1
i2

Ni
N!

(N−i)!

and
E[NU]

E[N2]
= N(N + 1)

2
∑N

i=1
i2

Ni
N!

(N−i)!

,

respectively. Note that both ratios are independent ofλ. By using the asymptotic expansions(12), (13)
and (14), we see that for largeN

E[TU]

E[T2]
≈ log(N)√

N

√
2

π
and

E[NU]

E[N2]
≈
√

N

2π
.

For instance, ifN = 103 thenE[TU]/E[T2] ≈ 0.17 andE[NU]/E[N2] ≈ 12.6.

3. Applications

This section is devoted to the application of the results in Section2 to three different mobility models.
It is structured as follows: the mobility models are presented in Section3.1and their simulation settings in
Section3.2. Through both intuitive reasoning and simulations it is shown in Section3.3that assumption
(A) is reasonable when the transmission range is not too large relative to the surface area. Based on
this observation, estimates are obtained for the meeting rateλ, for each mobility model and for various
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transmission ranges. With the help of these estimates the accuracy of the model is demonstrated in Sections
3.4 and 3.5, where the expected message delay and the distribution of the number of copies are compared
to simulation results.

3.1. Mobility models

Although the results in Section2 hold regardless of the dimension of the space in which the nodes
move, in the following we shall only apply them to three standard two-dimensional mobility models: the
random waypoint, the random direction, and the random walker mobility model.

3.1.1. Random waypoint mobility model
The random waypoint mobility model[3] is commonly used in the simulation of mobile ad hoc

networks. In the random waypoint mobility model each node is assigned an initial location in a given area
(typically a square) and travels at a constant speedS to a destination chosen uniformly in this area. The
speedS is chosen uniformly in (vmin, vmax), independently of the initial location and destination. After
reaching the destination, the node may pause for a random amount of time after which a new destination
and a new speed are chosen, independently of all previous destinations, speeds, and pause times. The
stationary distributions of location and speed in the random waypoint mobility model differ significantly
from the uniform distribution. In particular, it has been observed that the stationary distribution of the
location of a node is more concentrated near the center of the region in which the nodes move[2]. Also,
vmin needs to be strictly positive to ensure that the average speed over time does not go to zero[16].

3.1.2. Random direction mobility model
In the random direction mobility model[1,8] each node is assigned an initial directionθ, speedS ∈

[vmin, vmax] and a finite travel timeτ. The node then travels in the directionθ for a durationτ and at speed
S. When the node travel time has expired a new direction, speed and travel time are chosen at random,
independently of all previous directions, speeds and travel times. When a node reaches a boundary it is
either reflected[1] or the area wraps around so that the node reappears on the other side[1].

The stationary distributions of the location and direction have been shown to be uniform[11] for
arbitrary direction, speed and travel time distributions, irrespective of the boundaries being reflecting or
wrap around. This is in contrast with the random waypoint mobility model where nodes are more likely
to be concentrated near the center of the area. Another difference is thatvmin does not have to be strictly
positive. The speed can be equal to zero since the node maintains a certain speed only for a limited amount
of time.

3.1.3. Random walker mobility model
In the two-dimensional random walker mobility model each node moves as a random walker on a

two-dimensional lattice. The time is discrete and at each time step each node has a probability of 1/4 of
hopping to a position above, below, to the left, or to the right of its current position. If the node is positioned
on a boundary, then instead of hopping off the lattice it hops back to the same state. This movement can
be seen as someone wandering at a constant speed from intersection to intersection through a city, where
all of the streets are equally spaced and perpendicular to each other (Manhattan network). The stationary
distribution of the location of a two-dimensional random walker on a square lattice is uniform over the
area. This properties is a consequence of the fact that a two-dimensional random walker can be constructed
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from two independent one-dimensional random walkers, and that the stationary location of a symmetric
random walk in one-dimension is uniform (taken → ∞ in formula (3.15) in[4, p. 357] to obtain the
stationary distribution and then setp = q = 1

2).

3.2. Simulation setting

The numerical results presented hereafter are based on simulation programs in which mobile nodes
move in a square of size 4 km× 4 km, without pausing.

As mentioned in[12], there are several pitfalls to avoid when simulating the random waypoint mobility
model. In this work we have used the implementation of the random waypoint mobility model proposed
in [12] (without pausing), which consists of sampling the initial speeds and locations from their stationary
distributions. Then, subsequent speeds and locations are sampled from the uniform distribution.

Since the stationary distribution of the location of a node is uniform in both the random direction
mobility model and the random walker mobility model, their implementation does not pose any difficulty.

For the random waypoint mobility model and the random direction mobility model, a speed (in km/h)
was chosen uniformly in [vmin, vmax] = [4, 10].

In the random direction mobility model, a node moves in a direction that is uniformly distributed in
[0, 2π), for an exponential amount of time (expressed in hours) with mean 1/4, and at a speed that is
uniformly distributed in [4,10], before the node chooses a new direction, travel time, and speed.

For the random walker mobility model we assume the streets are 80 m apart and the random walkers
move at the speed of one block per minute (this results in 512 = 2601 states and a constant speed of
4.8 km/h).

As mentioned earlier, we assume that there is no inference and that the transmission of a message
between two nodes (in contact) is instantaneous.

In order to apply the results in Section2 we need, for each mobility model, to check the validity of
assumption (A) and to identify the parameterλ of the exponential inter-meeting time distribution.

3.3. Validation of the Poisson meeting times

For each mobility model and for various communication radii, we have simulated the movement of
two nodes and have estimated the distribution of the inter-meeting times (Section3.3.1) and shown the
independence of the process through the autocorrelation function (Section3.3.2). The results, based on
100,000 observations, show that the Poisson assumption for the meeting time sequences is valid for all
three mobility models and for a large range of communication radii.

3.3.1. Inter-meeting time distribution
Fig. 3 displays, on a log-scale for they-axis, the complementary cumulative distribution function

(complementary cdf) of the inter-meeting time between two nodes for each mobility model and for three
different communication radii (r = 50, 100, 250 m).

For the random direction and the random waypoint mobility models, and for each communication
radius, we have also plotted the complementary cdf of an exponential distribution (i.e. a straight line on
a log-scale for they axis) with intensity (i.e. slope)λ. We observe an excellent agreement between the
estimated cdf (solid line) and the exponential cdf (dashed line) for the three different communication
radii. Estimates for the value ofλ for these two models can been derived and are given inLemma 4. The
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Fig. 3. Complementary cdf of the inter-meeting time of two nodes.

proof – which confirms that the meeting times can be modeled as a Poisson process – can be found in[5,
Chapter 4]and has been omitted here due to space constraints.

Lemma 4 (Estimates forλ). The parameter λ for the random direction (RD) and the random waypoint
(RW) mobility models is given by

λRD ≈ 2rE[V ∗]

L2
, and λRW ≈ 2ωrE[V ∗]

L2
, (15)

respectively, for values of r 
 L. Here ω ≈ 1.3683is a constant specific to the random waypoint model
and E[V ∗] is the average relative speed between two nodes. In the special case where v = vmin = vmax

we have λRD ≈ 8rv
πL2 and λRW ≈ 8ωrv

πL2 .

The average speedE[V ∗] can be calculated numerically[5, Proposition 4.2.2]. For example, if
[vmin, vmax] = [4, 10] km/h, thenE[V∗] ≈ 9.2 km/h for the random direction andE[V∗] ≈ 8.7 km/h for
the random waypoint mobility model. The values ofλ thus obtained are given inFigs. 3 and 4.

For the random walker mobility model the situation is more complicated: the inter-meeting time is not
exponential but there is an exponential tail which rapidly emerges. The reason, we argue, is because random
walkers have a tendency to “hang around” the same region (resulting in many small inter-meeting times).
If, however, the two random walkers have wandered away from one another, then we find an exponential
distribution for the time until they meet again. This explains why in[15] the first-meeting time (defined
as the time between a random moment and the moment when two nodes meet) between two Brownian
motions resembles an exponential distribution whereas the inter-meeting time does not.

Because of the quick emergence of the exponential tail for the random walker mobility, we have included
it in our analysis to see how robust our model is. An explicit expression for the exponential tail under the
random walker mobility model is, to the best of our knowledge, not known and it is therefore obtained
numerically as the complementary of the average first-meeting time obtained across all simulations.

The fact that, for each mobility model, the cdf of the inter-meeting distribution is well-approximated
by an exponential distribution, at least for small to moderate transmission radii (with respect to the size of
the area) finds its roots in the various independence assumptions placed on each mobility model. Indeed,
nodes move independently of each other and future directions and speeds (and therefore locations) of a
node are independent of past directions and speeds of this node. If we pick two mobile nodes at random
at some stationary time, then there is a probabilityq that they will meet (in the sense of being within
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Fig. 4. Relationship between the inter-meeting time intensityλ and the communication radiusr.

transmission range of one another) before the next change of direction of either node. At the next change
of direction, because of the independent assumptions recalled above, the process repeats itself and there
is a probabilityq that these nodes will meet before the next change of direction. This yields a geometric
distribution for the number of changes of direction before both nodes meet. The exponential distribution
pops up because the number of changes of direction is “linearly” related to the time traveled before the
nodes meet.

3.3.2. Independence of inter-meeting times
Let {τ(n)}n be then-th inter-meeting times between two given nodes. To check the assumption that the

rvs {τ(n)}n are mutually independent, we have used the following classical estimator for the autocorrela-
tion function of{τ(n)}n

ρm(h) = γm(h)

γ0(h)
, h ≥ 0,

where

γm(h) := 1

m

m−h∑
n=1

(τ(n + h) − τ̂(m))(τ(n) − τ̂(m))

is an estimator of the autocovariance function, withτ̂(m) = (1/m)
∑m

n=1 τ(n) the sample mean form
observations. In particular,ρ0(h) = 1.

If the rvs{τ(n)}n are mutually independent then their autocorrelation function is equal to zero for all
h ≥ 1.

The mappingh → ρm(h) corresponding to the random waypoint mobility model is plotted inFig.
5 for m = 100, 000 andr = 0.25 km. The autocorrelation functions corresponding to other values ofr
(r = 0.05 km,r = 0.1 km) and/or to the random direction mobility model and the random walker mobility
model are not displayed since they are identical to the results inFig. 5.
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Fig. 5. Autocorrelation function of inter-meeting times for the random waypoint model withr = 0.25 km.

Sinceρm(h) is very close to zero for allh ≥ 1 we conclude that the assumption that the inter-meeting
times between two nodes are mutually independent rvs is a reasonable assumption.

In conclusion, the results reported in Sections3.3.1 and 3.3.2validate the assumption that the meeting
time process between two given nodes is a Poisson process for all three mobility models and for small to
moderate communication radii (with respect to the size of the area in which the nodes move).

3.4. Expected message delay

For the three mobility models introduced in Section3.1and for three communication radii (r = 0.05,
0.1, 0.25 km),Figs. 6 and 7display the expected message delays obtained both through simulations and
by the analytical model as a function of the number of nodes. Results for the two-hop (resp. unrestricted)
multicopy protocol are given inFig. 6(resp.Fig. 7).

These results demonstrate the ability of the analytical model to predict the expected message delay
under both the two-hop multicopy protocol and the unrestricted multicopy protocol for different mobility
patterns, across any number of nodes and communication radii.

Fig. 6. Message delay vs. number of nodes: the two-hop multicopy protocol.
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Fig. 7. Message delay vs. number of nodes: the unrestricted multicopy protocol.

3.5. Distribution of the number of copies

Figs. 8–10compare the distribution of the number of copies at message delivery time obtained through
simulations (represented by bars) and by the analytical model (solid lines), under both relay protocols
and for 40 nodes (i.e.N = 39). Results for the two-hop multicopy protocol are displayed inFigs. 8 and
9 for the random waypoint and the random walker mobility models, respectively (results for the random
direction mobility models are identical to that of the random waypoint mobility model and have not been
displayed). We observe that for all three mobility models the fit is quite good whenr = 50 m and that it

Fig. 8. Distribution number of copies: the two-hop multicopy protocol under the random waypoint model.

Fig. 9. Distribution of the number of copies: the two-hop multicopy protocol under the random walker model.
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Fig. 10. Distribution of the number of copies: the unrestricted multicopy protocol.

deteriorates asr increases (although the results are still acceptable forr = 100 m for the random waypoint
mobility model and the random direction mobility model).

Results for the unrestricted multicopy protocol are reported inFig. 10. Recall that for this protocol the
number of copies is uniformly distributed in the analytical model, namely,P(NU = i) = 1/39 ≈ 0.0256
for all i = 1, . . . , 39 (seeProposition 1). Results are displayed for each mobility model, each for a different
transmission range. We can see that in all cases the distribution of the number of copies is very close to
the uniform distribution.

These results give a good indication that our model, despite its genericness, is able to capture the main
features of the interaction of the mobility models and the relay protocols.

4. A transmission range which depends on the number of nodes

We have observed in Section3 that, for the three mobility models considered in this chapter, the inter-
meeting time intensity (λ) is well approximated by a linear function of the transmission ranger. This
approximation is valid as long asr is not “too large” with respect to the size of the area in which the nodes
move. On the other hand, when the number of nodes increasesr should decrease to prevent interferences
from becoming excessive. Putting these two observations together yieldsλ = O(r(N)), wherer(N), the
transmission range for a network withN nodes, is a decreasing function ofN. Introducing this behaviour
of λ into Theorem 2immediately gives the following:

Corollary 5. If λ is linearly dependent on the radius and the radius r(N) is dependent on the number of
nodes, then for large N

E[T2] = O
(

1√
Nr(N)

)
and E[TU ] = O

(
log(N)

Nr(N)

)
.

If we chooser(N) = O(1/
√

N) in order to keep interference at an acceptable level (it is shown in[7] [14,
Lemma 1]thatr(N) = O(1/

√
N) achieves a constant capacity per node with the two-hop relay protocol),

then

E[T2] = O(1) and E[TU ] = O
(

log(N)√
N

)
.
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Alternatively, one may wish to find the functionr(N) so that the expected message delay under the
unrestricted multicopy protocol isO(1) as the number of nodes becomes large. This is achieved when
r(N) = O(log(N)/N) leading toE[T2] = O(

√
N/ log(N)).

Remark 6. Let TR be the message delay under the two-hoprelay protocol. Recall that in this protocol
a message is relayed instead of copied[7,14,15]. Similar to the analysis conducted in Section2, it can
be shown thatE[TR] = λ−1(1 + 1/N − 1/N2) = λ−1(1 +O(1/N)). Sinceλ = O(r(N)) for the random
waypoint model, and with the scalingr = O(1/

√
N), we find that the expected message delay under the

two-hoprelay protocol isO(
√

N), just as was found in[14] but for nodes moving on a sphere.2

5. Concluding remarks

In this paper we have introduced a simple stochastic model with only two parameters to characterize
the delay incurred by a message in a mobile ad hoc network. The LST of the message delay, and the
distribution of the number of copies of the message at the time the message is delivered to the destination
node, have been derived for two protocols: the two-hop and the unrestricted multicopy protocol. These
analytical results have been compared to simulation results obtained for three different mobility models:
the random waypoint, the random direction and the random walker mobility models. For small to moderate
transmission radii (with respect to the size of the area), the analytical results very closely match the
simulation results.

We believe that this generic model can be used to evaluate and compare the performance of different
routing protocols for MANET for a wide range of mobility models.

Future research will focus on the message delivery within a certain timeframe, the inclusion of queueing
delays, non-homogeneous scenarios (nodes have a different or a changing transmission range), the inclu-
sion of interference and transmission times, and the study of other mobility models (two-dimensional,
three-dimensional, or on a sphere).

Appendix A. Proof of the asymptotic expansion of Eq. (12)

In this appendix it will be shown that (for largeN)

N∑
i=1

i2N!

(N − i)!Ni
= N3/2

√
π

2
+O(N). (A.1)

Proof. DefineA(N) := ∑N
i=1

i2N!
(N−i)!Ni . If it were not for the presence of the factori2 in A(N), then this

quantity would be the Ramanujan Q-distribution[13, page 188], which is also known as the birthday
function and often shows up in the analysis of algorithms.

The derivation of the approximation(A.1) follows that of the Ramanujan Q-distribution approximation
[13, Proposition 4.8]. We now outline it.

2 The Brownian motion mobility model was studied in[15], whereas in this paper we consider the random walker mobility
model. To go from the latter movement to the former care must be taken in terms of the limit and the metric under consideration
(expected delay).
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Let i0 := �N3/5�. This implies thati20/N → ∞ asN → ∞ andi0 = o(N2/3). We have

A(N) =
i0∑

i=1

i2N!

(N − i)!Ni
+ B(N),

with B(N) := ∑N
i=i0+1

i2N!
(N−i)!Ni .

B(N) is an exponentially small function ofN, in the sense thatB(N) isO(1/Na) for anya > 0. The
proof of this result goes as follows. It is shown in the proof of Proposition 4.8 in[13] that C(N) :=∑N

i=i0+1
N!

(N−i)!Ni is an exponentially small quantity. On the other hand,B(N) ≤ N2C(N), from which we
conclude thatB(N) is exponentially small since the product of an exponentially small quantity and any
polynomial inN remains an exponentially small quantity[13, Exercise 4.10, p. 158].

Therefore,A(N) = ∑i0
i=1

i2N!
(N−i)!Ni + 	(N), where	(N) represents a function which is exponentially

small. For any integeri that is o(N2/3) it is shown in[13, Proposition 4.4]that

N!

(N − i)!Ni
= e−i2/(2N)

(
1 +O

(
i

N

)
+O

(
i3

N2

))
. (A.2)

Sincei = o(N2/3) whenever 1≤ i ≤ i0, we deduce from(A.2) that

A(N) =
i0∑

i=1

i2e−i2/(2N)

(
1 +O

(
i

N

)
+O

(
i3

N2

))
+ 	(N).

By applying the Euler–MacLaurin summation[13, Proposition 4.2]to the functionsx3e−x2/2 andx5e−x2/2

we find (see[13, Exercice 4.9]for similar results)

i0∑
i=1

i2e−i2/(2N)O
(

i

N

)
= O(N) and

i0∑
i=1

i2e−i2/(2N)O

(
i3

N2

)
= O(N),

respectively. Hence,A(N) = ∑i0
i=1 i2e−i2/(2N) +O(N). By noting thati2e−i2/(2N) is exponentially small

for i > i0, we can add all terms fori > i0 into the summation to give

A(N) =
∑
i≥1

i2e−i2/(2N) +O(N). (A.3)

The above summation is the summation of the functionNx2e−x2/2 at regularly spaced points with step
1/

√
N. Another application of the Euler–MacLaurin formula[13, Proposition 4.2]yields

∑
i≥1

i2e−i2/(2N) = N3/2
∫ ∞

0
x2e−x2/2dx +O(N) = N3/2

√
π

2
+O(N), (A.4)

so thatA(N) = N3/2
√

π
2 +O(N) from (A.3) and (A.4), which concludes the proof of the lemma.�
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