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� PageRank is one of the principle criteria according to which Google ranks Web pages.
PageRank can be interpreted as the frequency that a random surfer visits a Web page, and
thus it reflects the popularity of a Web page. We study the effect of newly created links on
Google PageRank. We discuss to what extent a page can control its PageRank. Using asymptotic
analysis we provide simple conditions that show whether or not new links result in increased
PageRank for a Web page and its neighbors. Furthermore, we show that there exists an optimal
(although impractical) linking strategy. We conclude that a Web page benefits from links inside
its Web community and on the other hand irrelevant links penalize the Web pages and their
Web communities.
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1. INTRODUCTION

Surfers on the Internet frequently use search engines to find pages
satisfying their query. However, there are typically hundreds or thousands
of relevant pages available on the Web. Thus, listing them in an adequate
order is a crucial and non-trivial task. The original idea that Google
founders presented in Ref.[4] was to list pages according to their PageRank,
which is a measure of page popularity. The PageRank is defined in the
following way. Denote by n the total number of pages on the Web and
define the n × n hyperlink matrix P as follows. Suppose that page i has
k > 0 outgoing links. Then pij = 1/k if j is one of the outgoing links and
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320 Avrachenkov and Litvak

pij = 0 otherwise. If a page does not have outgoing links, the probability is
spread among all pages of the Web, namely, pij = 1/n for all j = 1, � � � ,n.
Further, it is assumed that a random surfer goes with some probability to
an arbitrary Web page with the uniform distribution. Thus, the PageRank
is defined as a stationary distribution of a Markov chain whose state space
is the set of all Web pages, and the transition matrix is

P̂ = cP + (1 − c)(1/n)E , (1)

where E is a matrix whose all entries are equal to one, n is the number
of Web pages, and c ∈ (0, 1) is the probability of not jumping to a random
page (Google originally used c = 0�85). The Google matrix P̂ is stochastic,
aperiodic, and irreducible, so there exists a unique row vector � such that

�P̂ = �, �1 = 1, (2)

where 1 is a column vector of ones. The row vector � satisfying (2) is called
a PageRank vector, or simply PageRank. If a surfer follows a hyperlink with
probability c and jumps to a random page with probability 1 − c , then �i

can be interpreted as a stationary probability that the surfer is at page i .
The factor c serves several purposes. The most apparent purposes,

which are widely discussed in the literature (Ref.[12]) are as follows: (i) if
c < 1 then the matrix P̂ is irreducible, and thus the PageRank distribution
exists and is uniquely defined; (ii) choosing the value of c not too close
to 1, one can guarantee a fast convergence of the power iteration method
in PageRank computations (Refs.[7,12]). As we show in Section 2, the
parameter c is also responsible for robustness of PageRank �i with respect
to outgoing links of page i . We further discuss the impact of the factor c in
Conclusions (Section 6).

In order to keep up with constant modifications of the Web structure,
Google regularly updates its PageRank. According to publicly available
information Google uses power iterations to compute the PageRank.
Several proposals such as Refs.[1,3,8–10,13–16] (see also an extensive survey
paper Ref.[12]) have recently been put forward to accelerate the PageRank
computation. This research direction can be regarded as taking a system
point of view. On the contrary, here we take a user point of view and
try to answer the following questions: When do new links benefit the
Web page from which they emanate? When do the pages from the same
Web community benefit from the link creation? Is there an optimal
linking strategy? As one can see from numerous articles and forums
(see e.g., Refs.[20,21]), these questions are highly relevant in the search
engine optimization community. Our paper is an attempt to suggest
rigorous mathematical arguments that may help to provide solid practical
recommendations as well as to dismiss many common misconceptions.
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Effect of New Links on Google PageRank 321

2. TO WHAT EXTENT CAN A PAGE CONTROL
ITS PAGERANK?

The PageRank defined in (2) clearly depends on both incoming and
outgoing links of a page. Thus, the easiest way for a page to change its
ranking is to modify the outgoing links. Below we shall show that the
PageRank can be written as a product of three terms where only one
term depends on outgoing links. It will allow us to estimate the extent
to which a page can control its PageRank. To this end, we first recall the
following useful expression for the PageRank (Refs.[2,12,16]), which in fact
follows directly from (1), (2):

� = 1 − c
n

1T [I − cP ]−1� (3)

Let zij denote the (i , j) element of the matrix Z = [I − cP ]−1. Namely,
we have

zij = eTi [I − cP ]−1ej , i , j = 1, � � � ,n, (4)

where ek is the kth column of the identity matrix I . Now, define a
discrete-time absorbing Markov chain �Xt , t = 0, 1, � � � � with the state space
�0, 1 � � � ,n�, where transitions between the states 1, � � � ,n are conducted by
the matrix cP , and the state 0 is absorbing. Let Nj be the number of visits
to state j = 1, � � � ,n before absorption including the visit at time t = 0 if X0

is j . Formally,

Nj =
∞∑
t=0

1�Xt=j�, j = 1, � � � ,n,

where 1�·� denotes the indicator function. Note that zij equals the
conditional expectation of Nj given that the initial state is i :

zij = eTi

[ ∞∑
t=0

c tP t

]
ej =

∞∑
t=0

eTi c
tP t ej =

∞∑
t=0

�(Xt = j |X0 = i)

=
∞∑
t=0

�(1�Xt=j�|X0 = i) = �(Nj |X0 = i)�

Let qij be the probability of reaching the state j before absorption if
the initial state is i . Using the strong Markov property (Ref.[17]), we can
establish the following decomposition result.

Proposition 2.1. The PageRank of page i is given by

�i = 1 − c
n

zii

(
1 +

n∑
j=1
j �=i

qji

)
, i = 1, � � � ,n� (5)
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322 Avrachenkov and Litvak

Proof. It follows from (3) that

�i = 1 − c
n

1T [I − cP ]−1ei = 1 − c
n

n∑
j=1

zji � (6)

Further, we have �(Ni = 0 |X0 = j) = 1 − qji , and using the strong Markov
property, we can write for any k ≥ 1

�(Ni = k |X0 = j) = �(Ni = k,Ni ≥ 1 |X0 = j)

= �(Ni ≥ 1|X0 = j)�(Ni = k |X0 = j ,Ni ≥ 1)

= qji�(Ni = k |X0 = i)�

Consequently, for any i , j = 1, � � � ,n; i �= j , we have

zji = �(Ni |X0 = j) = qji�(Ni |X0 = i) = qji zii � (7)

Substituting (7) in (6) we immediately obtain (5). �

The decomposition formula (5) represents the PageRank of page i as
a product of three multipliers where only the term zii depends on the
outgoing links of page i . Hence, by changing the outgoing links, a page
can control its PageRank up to multiplication by a factor zii = 1/(1− qii) ∈
[1, (1 − c2)−1], where qii ∈ [0, c2] is the probability of return back to i
starting from i (the upper bound (1 − c2)−1 is approximately 3.6 for
c =�85). We note that even a threefold increase of the PageRank might
not be considered as a significant improvement, since Google measures
the PageRank on a logarithmic scale (Ref.[19]). An increase of this order
could be helpful for unimportant pages but in practice the upper bound
(1 − c2)−1 is hardly possible to achieve. Indeed, in order to ensure the
highest possible return probability c2, a page i must point to pages that
link only to i . Such a policy makes i and its neighbors isolated from
the rest of the Web. In fact, our results suggest once a page i provides
a number of “natural” links, such as a link from a user’s homepage to
his/her department homepage, the multiplication factor zii becomes quite
robust and hardly subject to major changes. The conclusion is that the
PageRank of a Web page cannot be improved considerably by manipulating
its outgoing links. The greatest possible increase is not very significant, and
it can be achieved only by damaging a logical link structure, which will not
pay off in the end.

If page i does not have outgoing links, then zii is very close to the lower
bound 1, since there is almost no chance to return from i back to i before
absorption. Ref.[2] presents a circuit analysis to study in detail the influence
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Effect of New Links on Google PageRank 323

of pages without outgoing links (leaves, dangling nodes) on the PageRank
of a Web community. The authors of Ref.[2] came to the same conclusion
that dangling causes a considerable loss in ranking. Our formula (5) helps
to quantify this loss.

In the ensuing sections we shall obtain exact formulae that further
quantify the changes in the PageRank distribution when new links are
added by one of the pages.

3. RANK ONE UPDATE OF GOOGLE PAGERANK

Let us consider a Web page with k0 old hyperlinks and k1 newly created
hyperlinks. Without loss of generality, we assume that the page with new
links has index 1 and the pages towards which new links are pointed have
indices from 2 to k1 + 1. Put k = k0 + k1 and let pT

1 be the first row of
matrix P . Then after adding the new links the first row becomes (k0/k)pT

1 +
(1/k)

∑k1+1
i=2 eTi , and thus the addition of new links can be regarded as rank

one update of the hyperlink matrix

P̃ = P + e1uT , (8)

with

uT = 1
k

k1+1∑
i=2

eTi − k1
k
pT
1 �

In Ref.[13] the authors use updating formulae to accelerate the PageRank
computation. By restricting ourselves to the case of a rank one update,
we are able to perform a more comprehensive analysis. The next theorem
provides updating formulae for the PageRank elements.

Theorem 3.1. Let k1 new links emanating from page 1 be added. Then,
the elements of new PageRank vector are given by the following updating formulae

�̃1 = �1

1 − k1
k

(
1 + c

k1

∑k1+1
i=2 zi1 − z11

) , (9)

�̃j = �j + �1

k1
k

(
c
k1

∑k1+1
i=2 zij − z1j

)
1 − k1

k

(
1 + c

k1

∑k1+1
i=2 zi1 − z11

) , j = 2, � � � ,n� (10)

Proof. Applying the Sherman-Morrison-Woodbury updating formula
(Ref.[6]) to [I − cP̃ ]−1, we can write

[I − cP̃ ]−1 = [I − cP ]−1 + c
[I − cP ]−1e1uT [I − cP ]−1

1 − cuT [I − cP ]−1e1
�
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324 Avrachenkov and Litvak

Then, premultiplying the above equation by 1−c
n 1T and using (3), we get

�̃ = � + �1
cuT [I − cP ]−1

1 − cuT [I − cP ]−1e1
,

and consequently,

�̃1 = �1
1

1 − cuT [I − cP ]−1e1
, (11)

�̃j = �j + �1
cuT [I − cP ]−1ej

1 − cuT [I − cP ]−1e1
, j = 2, � � � ,n� (12)

Next, we evaluate cuT [I − cP ]−1ej for j = 1, � � � ,n,

cuT [I − cP ]−1ej = cuTZej = c
k1
k

(
1
k1

k1+1∑
i=2

eTi − pT
1

)
Zej

= k1
k

(
c
k1

k1+1∑
i=2

eTi Zej − cpT
1 Zej

)
�

Since cPZ = Z − I , we have cpT
1 Z = zT1 − eT1 , where zT1 is the 1st row of the

matrix Z , and hence cpT
1 Zej = z1j − eT1 ej . Thus, we get

cuT [I − cP ]−1ej = k1
k

(
c
k1

k1+1∑
i=2

zij − (z1j − eT1 ej)
)
�

Substituting the above expression for cuT [I − cP ]−1ej , j = 1, � � � ,n, into
(11) and (12), we obtain (9) and (10). �

The results in Theorem 3.1 are in line with formula (5). If page 1
updates its outgoing links then in decomposition (5) for �1 only the second
multiplier will be affected. In the new situation, the probability q̃11 to return
to page 1 starting from this page, is given by

q̃11 = k − k1
k

q11 + c
k

k1+1∑
i=2

qi1�

Substituting this expression in

�̃1 = z̃11
z11

�1 = 1 − q11
1 − q̃11

�1,
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Effect of New Links on Google PageRank 325

we get the updating formula (9). According to (9) the ranking of page 1
increases when

1 + c
k1

k1+1∑
i=2

zi1 − z11 > 0, (13)

which is equivalent to

1
k1

k1+1∑
i=2

qi1 > q11�

Hence, the page 1 increases its ranking when it refers to pages that are
characterized by a high value of qi1. These must be the pages that refer
to page 1 or at least belong to the same Web community. Here by a Web
community we mean a set of Web pages that a surfer can reach from one
to another in a relatively small number of steps.

Let us now consider formula (10). First, we see that the difference
between the old and the new ranking of page j is proportional to �1.
Naturally, hyperlink references from pages with high ranking have a
greater impact on other pages. Furthermore, the PageRank of page j
increases if

c
k1

k1+1∑
i=2

zij > z1j � (14)

Indeed, if (14) holds then the increase of PageRank for page j follows from
(6) since zkj increases for each page k that has a path to j via page 1, and
the other zkj ’s remain unaffected. Naturally, it is most beneficial for page
j to receive one of the new links. Formally, it follows from (7) that zij =
qij zjj where qij < 1, so that zjj constitutes the maximal possible contribution
in the left-hand side of (14). On the other hand, if several new links are
added then the PageRank of page j might actually decrease even if this
page receives one of the new links. Such situation occurs when most of
newly created links point to “irrelevant” pages. For instance, let j = 2 and
assume that there is no hyperlink path from pages 3, � � � , k + 1 to page 2.
Then zij is close to zero for i = 3, � � � , k + 1, and the PageRank of page 2 will
increase only if (c/k1)z22 > z12, which is not necessarily true, especially if z12
and k1 are considerably large. The asymptotic analysis in the next section
allows us to further clarify this issue.

4. ASYMPTOTIC ANALYSIS

Let us apply an asymptotic analysis to formulae (9) and (10) when c
is close to one and the Markov chain induced by the hyperlink matrix P
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326 Avrachenkov and Litvak

is irreducible. The asymptotic approach allows us to derive simple natural
conditions that show if a Web page with newly created links and its
neighbors benefit from these new links.

Let mij be the average time needed to reach j starting from i when the
random walk follows the original hyperlink matrix P , i.e., c = 1. We refer to
the mij ’s as mean first passage times (Ref.[11]). Note that mii > 1 is the mean
return time to page i starting from this page. The following theorem allows
us to predict changes in PageRank using the mean first passage times.

Theorem 4.1. Let c be sufficiently close to one and let page 1 have k1 new links
to pages �2, � � � , k1 + 1�. Assume that the Markov chain induced by the hyperlink
matrix P is irreducible. Then, we have the following conditions:

1. if m11 > 1 + 1
k1

∑k1+1
i=2 mi1, the creation of new links �1 → 2, � � � , 1 → k1 + 1�

increases the PageRank of page 1;
2. if m1j > 1 + 1

k1

∑k1+1
i=2,i �=j mij , the creation of new links �1 → 2, � � � , 1 → k1 + 1�

increases the PageRank of page j from the set �2, � � � , k1 + 1�;
3. if m1l > 1 + 1

k1

∑k1+1
i=2 mil , the creation of new links �1 → 2, � � � , 1 → k1 + 1�

increases the PageRank of page l , for l > k1 + 1;

Proof. First, we make a change of variable c = 1/(1 + �), with � > 0 in
the formula for Z (c) as follows:

Z (c) = [I − cP ]−1 =
[
I − 1

1 + �
P

]−1

= (1 + �)[�I − (P − I )]−1�

Then, we use the resolvent Laurent series expansion for the Markov chain
generator (see e.g., Ref.[18], Theorem 8.2.3)

Z (c) = [I − cP ]−1 = (1 + �)[�I − (P − I )]−1

= (1 + �)

[
1
�
� + H +

∞∑
k=1

�k(−1)kH k+1

]
,

where � = 1� is the ergodic projection and H is the deviation matrix of
the Markov chain induced by P . Since we consider a finite state Markov
chain, the above series has a non-zero radius of convergence.

Let us now prove the first statement of the theorem. It is enough to
show that Condition 1 guarantees that

1 + c
k1

k1+1∑
i=2

zi1(c) − z11(c) > 0
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Effect of New Links on Google PageRank 327

for all c sufficiently close to one, or equivalently, for all � sufficiently close
to zero,

1 + c
k1

k1+1∑
i=2

zi1(c) − z11(c)

= 1 + 1
k1

k1+1∑
i=2

(
1
�
�1 + hi1 + O(�)

)
− (1 + �)

(
1
�
�1 + h11 + O(�)

)

= 1 + 1
k1

k1+1∑
i=2

hi1 − h11 − �1 + O(�)�

Since mij = (hjj − hij)/�j for i �= j (Ref.[11]), we have

1 + c
k1

k1+1∑
i=2

zi1(c) − z11(c) = 1 + 1
k1

k1+1∑
i=2

(h11 − mi1�1) − h11 − �1 + O(�)

= 1 − �1

(
1 + 1

k1

k1+1∑
i=2

mi1

)
�

Then, the condition

1 − �1

(
1 + 1

k1

k1+1∑
i=2

mi1

)
> 0

is equivalent to

m11 > 1 + 1
k1

k1+1∑
i=2

mi1,

since m11 = 1/�1.
Next we prove the second statement of the theorem. It is enough to

show that Condition 2 implies that for a given j ∈ �2, � � � , k1 + 1�,

c
k1

k1+1∑
i=2

zij(c) − z1j(c) > 0

for all c sufficiently close to one, or equivalently, for all � sufficiently close
to zero. We write

c
k1

k1+1∑
i=2

zij(c) − z1j(c)

= 1
k1

k1+1∑
i=2

(
1
�
�j + hij + O(�)

)
− (1 + �)

(
1
�
�j + h1j + O(�)

)
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= 1
k1

k1+1∑
i=2

hij − h1j − �j + O(�)

= 1
k1

k1+1∑
i=2,i �=j

(hij − h1j − �j) + 1
k1
(hjj − h1j − �j) + O(�)

= 1
k1

k1+1∑
i=2,i �=j

(hjj − mij�j − hjj + m1j�j − �j) + 1
k1
(m1j�j − �j) + O(�)

= �j

k1

( k1+1∑
i=2,i �=j

(m1j − mij − 1) + (m1j − 1)
)

+ O(�)�

The latter expression is positive for all sufficiently small �, if

k1+1∑
i=2,i �=j

(m1j − mij − 1) + (m1j − 1) > 0,

which is equivalent to Condition 2. The proof of Condition 3 is very similar
to the proofs of Conditions 1 and 2. �

All conditions of Theorem 4.1 have very clear probabilistic
interpretations. These interpretations become even more transparent in
the case when only one new link is added. For instance, in the case of
a single new link Condition 1 takes the form m11 > m21 + 1. The latter
means that the average path from page 2 to page 1 should be shorter
at least by one hop than the average return path from page 1 to itself.
Condition 2 becomes m12 > 1, which is always true. This is not surprising as
we know that an addition of a single new link pointing to a Web page always
increases its PageRank (see e.g., Ref.[2]). However, as mentioned at the end
of the previous section, if several new links are added simultaneously, then
the pages receiving a new link do not necessarily have increased PageRank.
Writing the inequality in Condition 2 for some j = 2, � � � , k + 1, we see that
the right-hand side may become quite large when several new links point
to pages that, on average, have very long paths to page j . To summarize,
incoming links are especially valuable if they are received from popular
pages that are dedicated to a particular Web community.

There is a striking similarity between Conditions 1–3 from Theorem 4.1
and conditions (13) and (14) derived in the previous section. However,
in the asymptotic case, the conditions of improving the PageRank are
expressed in terms of mean first passage times rather than mean number
of visits before absorption.
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Effect of New Links on Google PageRank 329

5. OPTIMAL LINKING STRATEGY

In this section we show that there exists in fact an optimal linking
strategy. Consider a page i = 1, � � � ,n and assume that i has links to pages
i1, � � � , ik distinct from i . Further, let mij(c) be the mean first passage
time from page i to page j for the Google transition matrix P̂ with
parameter c . Then writing the linear equations for the mean first passage
times (Ref. [11]), we obtain

mii(c) = 1 + c
k

k∑
l=1

mil i(c) + 1
n
(1 − c)

n∑
j=1
j �=i

mji(c), (15)

The objective now is to choose k and i1, � � � , ik such that mii(c) becomes
as small as possible and consequently �i = 1/mii(c) becomes as large as
possible. From (15) one can see that mii(c) is a linear function of the values
mji(c), j �= i . Moreover, outgoing links from i do not affect mji(c) for any
j �= i . Thus, by linking from i to j , one can only alter the coefficients in the
right-hand side of (15). As was also noted in Section 2, this means that the
owner of the page i has very little control over its PageRank. The best that
he/she can do is to link only to one page j ∗ such that

mj∗i(c) = min
j
�mji(c)��

Note that (surprisingly) the PageRank of j ∗ plays no role here. Thus, we
have the following statement.

Theorem 5.1. The optimal linking strategy for a Web page is to have only one
outgoing link pointing to a Web page with a shortest mean first passage time back to
the original page.

This matches the observation in the end of Section 2 that the
improvement in the PageRank is maximal when page i links to pages
that have hyperlinks to i only. Definitely, such pages have the smallest
value of the mean first passage time to i . Of course, linking to only one
page as suggested by Theorem 5.1 most likely will result in poor content
quality of the Web page. However, the message from the above theorem
is that one has to link to pages that are relevant and belong to the same
Web community. Interestingly, the discussion on optimal linking strategy
partially explains the “practical” advice according to which, a Web site
owner should view his/her site as a set of pages and maintain a good inter-
link structure and to refer to his/her colleagues (Ref.[20]). Indeed, it follows
from our arguments that such a policy will certainly increase the PageRank
of all pages in the group.
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6. CONCLUSIONS

Our main conclusion is that a Web page cannot significantly
manipulate its PageRank by changing its outgoing links. Furthermore,
keeping a logical hyperlink structure and linking to a relevant Web
community is the most sensible and rewarding policy. This statement has
often been uttered by many leading search engine optimization specialists,
and it has now received a rigorous mathematical discussion in the present
paper. The multiplication factor that is still subject to control is bounded
by (1 − c2)−1, which gives a new interpretation for the “Google constant” c :
this parameter ensures that the PageRank is robust to manipulations. Apart
from the speed of convergence of the power iteration method, this is yet
another reason to choose the value of c not too close to 1.

We also would like to mention one more meaning of c that we have
not encountered in the literature so far. It is well known that the Web has
a so-called bow-tie structure (Ref.[5]) with one gigantic Strongly Connected
Component accompanied by In and Out components. Roughly, the pages
in the Out component receive links from other pages but do not link back.
Such a bow-tie structure induces a Markov chain where only some pages in
the Out component constitute the set of recurrent states. Note that even if
the stationary distribution of such a Markov chain were uniquely defined,
one cannot use c = 1 for ranking the pages. Indeed, if c = 1, then the
PageRank of transient states, including all pages in the strongly connected
component, is simply their stationary probabilities, which are equal to
zero. Such a ranking obviously does not make sense. Thus, the parameter
c < 1 is needed not only to ensure the fast convergence of the power
iteration method but also for obtaining reasonable values of the PageRank.
The effect of the value of c on PageRank is a promising future research
direction.
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