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Abstract—This paper introduces a novel analytical model for
estimating the cache hit ratio as a function of time. The cache
may not reach the steady-state hit ratio when the number of Web
objects, object popularity, and/or caching resources themselves
are subject to change. Hence, the only way to quantify the hit
ratio experienced by Web users is to calculate the instantaneous
hit ratio. The proposed analysis considers a single Web cache with
infinite or finite capacity. For a cache with finite capacity, two
replacement policies are considered: Least Recently Used (LRU)
and First-In–First-Out (FIFO). Based on the insights from the
proposed analytical model, we propose a new replacement policy,
called Frequency-Based-FIFO (FB-FIFO). The results show that
FB-FIFO outperforms both LRU and FIFO, assuming that the
number of Web objects is fixed. Assuming that new popular
objects are generated periodically, the results show that FB-FIFO
adapts faster than LRU and FIFO to the changes in the popularity
of the cached objects when the cache capacity is large relative to
the number of newly generated objects.

Index Terms—Analysis, caching, Markov chain, replacement
policy, Web.

I. INTRODUCTION

C ACHING Web objects close to end-users allows user
requests to be satisfied from a nearby Web cache (cache

hit) rather than the origin Web server (cache miss). Cache hits
reduce the load on origin Web servers and achieve bandwidth
savings over costly Internet links. These bandwidth savings
translate into reducing both wide-area network congestion
and response time of Web requests. On the other hand, cache
misses result in a long response time and extra processing
overhead [1], [2]. Caching is critical not only in network ap-
plications but also in microprocessor systems. Very fast caches
are usually used to hide the speed gap between main memory
and the CPU [3]–[5].
The cache performance is commonly evaluated in terms of hit

ratio. The hit ratio is the ratio between the number of cache hits
and the total requests observed over a period of time. Estimating
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the hit ratio can be done using analytical models [6]–[16] or sim-
ulations [17]–[22]. Analytical models provide more insight into
the factors that affect the cache hit ratio. Analytical models, if
simple and tractable, allow immediate prediction of the sensi-
tivity of the hit ratio to different factors, such as cache capacity
and object expiry rate. Consequently, analytical models, rather
than simulations, may allow efficient replacement policies to be
developed [14], [23].
The goal of this paper is to develop an analytical model for

estimating the hit ratio of a single cache as a function of time. In
this paper, this will be referred to as instantaneous hit ratio. Es-
timating the instantaneous hit ratio is important for any applica-
tion where the number of objects, object popularity, and/or the
caching resources themselves are subject to change. Consider
a scenario, such as a group of users watching sports highlights
or accessing vehicular traffic information, where objects experi-
ence only short-term popularity. Here, it is important for a cache
to reachmaximum performance quickly before the popularity of
the cached objects starts to drop. Similarly, a vehicular or mobile
network may store cached objects on mobile devices [24]–[27].
In this case, it is also important for the cache to reach high hit
ratio quickly before the mobile device that is hosting the cache
disconnects from the network.
In this paper, our concern is to evaluate how the cache hit

ratio evolves as a function of time in two cases. The first case
assumes that the number of Web objects and the object popu-
larity are fixed throughout the evaluation interval. In this case,
we evaluate the instantaneous hit ratio in the transient period
starting from an empty cache. The second case adopts more re-
alistic assumptions by assuming that the number of Web ob-
jects increases periodically. It is assumed that the most recently
generated objects become the most popular ones (news head-
lines for example). Hence, the popularity of the formerly cached
objects decreases every time new objects are generated. In this
case, the cache may not reach the steady-state hit ratio, and the
only way to quantify the hit ratio experienced by Web users is
to calculate the instantaneous hit ratio.
The main contribution of this paper is a novel analytical

model for estimating the instantaneous hit ratio of a single
cache. It is assumed that each object brought into the cache has
a finite lifetime beyond which it becomes obsolete and is ejected
[1], [28]. The proposed analytical model accommodates either
infinite or finite cache capacity. If the cache has infinite capacity
(Infinite Cache), then it stores all the requested objects. For the
finite case, the cache applies a replacement policy to decide
which objects to keep. This paper introduces analytical solu-
tions for two replacement policies: Least Recently Used (LRU),
and First-In–First-Out (FIFO). LRU ejects the least recently
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requested object, while FIFO ejects the object that was brought
into the cache earliest [3], [14], [29]. The proposed analytical
model can also be extended for other replacement policies such
as Most Recently Used (MRU) and Last-In–First-Out (LIFO).
Furthermore, based on the insights from the proposed analytical
model, we propose a new replacement policy, called Frequency
Based-FIFO (FB-FIFO). FB-FIFO improves the instantaneous
hit ratio of FIFO by creating a variable-size protected cache
segment for objects that are requested more than once within a
short time span.
In this paper, the performance of LRU, FIFO, and FB-FIFO

is compared to Perfect-LFU using the independent reference
model (IRM) [12], [29], [30]. Perfect-LFU ejects the least
frequently used object from the cache and keeps a record of
the number of requests for each object even after the object
is ejected. Thus, under the IRM, Perfect-LFU achieves better
steady-state hit ratio than LRU and FIFO.
The results show that different replacement policies have

very different transient performance, whether the popularity of
cached objects is fixed or not. This makes our analysis valuable
when considering scenarios like changing popularity or mobile
caching. The following list summarizes the major findings in
this paper.
• When the number of Web objects and the object popularity
are fixed during the transient period:
— Unlike the other replacement policies studied in this
paper, FIFO reaches its maximum hit ratio during
the transient fluctuations in hit ratio that occur before
reaching steady state. These fluctuations diminish as
the cache capacity decreases, or as the object expiry
rate increases with respect to the request rate.

— FB-FIFO outperforms both LRU and FIFO, especially
when cache capacity is small. Moreover, FB-FIFO
matches Perfect-LFU for a longer time as the cache
capacity increases.

— As the object expiry rate increases with respect to
the request rate, the instantaneous hit ratio for Infi-
nite Cache decreases more rapidly than Perfect-LFU,
FB-FIFO, LRU, and FIFO, which decreases the least.

• When new popular objects are generated periodically:
— FB-FIFO outperforms LRU and FIFO and adapts faster
than the other replacement policies to the changes in the
popularity of the cached objects (i.e., FB-FIFO is more
robust) when the cache capacity is large relative to the
number of the newly generated objects.

— For small caches, the robustness of FB-FIFO improves
as the object expiry rate increases.

Note that these findings are valid under the IRM, which is
widely used to develop tractable analytical caching models.
However, the IRM might not accurately model empirical traces
that have varying degrees of temporal correlation between
object requests [9], [31]. Thus, an interesting extension of the
proposed model would be to incorporate temporal locality
based on the LRU stack model (e.g., [18]).
The remainder of the paper is organized as follows. First,

the related work is summarized in Section II. In Section III,
the analysis assumptions are discussed. In Section IV, the anal-
ysis for Infinite Cache is presented. In Section V, the analysis
for LRU and FIFO is presented. In Section VI, the proposed

replacement policy FB-FIFO is described. Section VII presents
the analytical and simulation results. Finally, Section VIII con-
cludes the paper.

II. RELATED WORK

Analytical models for estimating the steady-state hit ratio for
a single cache with infinite capacity were proposed in [10]–[12].
The analytical model proposed by Wolman et al. [10] con-

sidered object lifetime, which is exponentially distributed and
correlated with the object popularity. The authors showed that
the steady-state hit ratio is very sensitive to the object expiry
rate. They also showed that the increase in the request rate, rel-
ative to the expiry rate, enhances the steady-state hit ratio. In
our paper, we investigate how the ratio between the object ex-
piry rate and request rate impacts the transient behavior of LRU
and FIFO.
Breslau et al. [12] proposed an analytical model to estimate

the steady-state hit ratio of Infinite Cache and Perfect-LFU, as-
suming objects that do not expire. Breslau et al. [12] showed
that the steady-state hit ratio for Perfect-LFU increases logarith-
mically or as a small power as a function of cache size. On the
other hand, our analytical model assumes cached objects with
limited lifetime and provides more insight into the evolution of
Infinite Cache with time.
The analytical model proposed by Rodriguez et al. [11] fo-

cused on the performance of cooperative caching schemes. The
proposed model in [11] aims at studying the performance of hi-
erarchical and distributed caching in terms of the hit ratio, the
client’s perceived latency, the bandwidth usage, the load in the
caches, and the disk space usage.
The main difference between our study and the study in [11]

is that our study focuses on providing an analytical solution for
a single cache with finite capacity.
Analytical models for estimating steady-state hit ratio for

LRU and FIFO were also introduced in [6]–[9] and [13]–[15].
Gelenbe [6] extended the analysis provided for FIFO in [30]

in order to show that FIFO and Random replacement poli-
cies reach the same steady-state hit ratio under the IRM.
Dan et al. [14] developed approximate analytical models for
predicting the steady-state hit ratio of LRU and FIFO under
the IRM. The study in [14] showed that LRU always outper-
forms FIFO in steady state. This method was then used by
Laoutaris et al. [16] for studying distributed caching in the
context of LRU.
Jelenkovic [7] showed that computing the LRU fault proba-

bility is the same as computing the Move-To-Front search cost
distribution, assuming the IRM. Also, the study in [15] pro-
posed an analytical model for estimating the steady-state hit
ratio of a single cache running LRU under the IRM. Moreover,
Jelenkovic et al. [8] showed that the caching performance does
not depend on the correlation in the request traffic for large
cache sizes [32]. Furthermore, Jelenkovic et al. [9] determined
the smallest cache size above which the cache performance does
not depend on the temporal correlation.
The analytical models introduced in [6]–[9], [14], and [15],

however, assumed a fixed number of objects that do not ex-
pire. The study by Mookerjee et al. [13] provided an analyt-
ical model for estimating the browser cache hit ratio and access
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delay assuming local caches running LRU replacement policy,
and a fixed number of objects that expire periodically.
While the previous studies focus on estimating the steady-

state hit ratio of a singleWeb cache running LRU or FIFO, to the
best of our knowledge, our work is the first attempt to develop
an analytical model to study the evolution of LRU and FIFO
with time, assuming cached objects that have limited lifetimes
and popularity that decreases periodically.

III. ANALYSIS ASSUMPTIONS

The proposed analysis models the caching activity of a single
Web cache during a fixed evaluation interval . At the be-
ginning of the evaluation interval (i.e., time ), the Web
server generates new Web objects, and the Web cache is as-
sumed to be empty. At time , the Web server may generate
new Web objects. Thus, the total number of Web objects stored
at the Web server increases to .
Consider an interval where the number of objects is fixed,

such that . The requests for those objects arrive
at the server according to a Poisson process with rate . The
probability of each request being for one of the objects is
determined by a Zipf-like distribution [12]. In this distribution,
the probability of the th most popular object being selected is

, where and is the Zipf slope such that
.

The overall Poisson request process at the server can be mod-
eled as a sum of independent Poisson processes that each
represent the requests for one of the objects [33]. The av-
erage request rate of the Poisson process for object at time ,
where , is

The user requests are directed to the Web cache. If the cache
has the requested object, the user downloads the object from
the cache. Otherwise, the cache downloads the requested object
from the origin Web server and stores a copy of the object to
satisfy future requests. While downloading the object, the cache
forwards the object to the requesting user.
The analysis also assumes that the cached object has limited

lifetime that is exponentially distributed [10] with mean .
The object lifetime is independent from both the object size and
the object popularity.
It is assumed that , , and are not subject to change within

the evaluation interval . However, the proposed analysis
can be extended to cover these cases, which are excluded from
this paper merely for conciseness.
The proposed analysis considers both infinite and finite cache

capacity. If infinite cache capacity (Infinite Cache) is assumed,
then the cache stores all requested objects. Otherwise, for a
cache with finite capacity, a replacement policy is applied to
make room for the requested object if the cache is full. We de-
fine the cache capacity as the average number of objects that
can be cached simultaneously, which approximately equals the
cache size divided by the average object size. It is assumed that
the object size is independent of object popularity [12], [13].

In the following sections, continuous-time Markov chain
analysis [34] is used to calculate the instantaneous hit ratio
for objects, . Since the Poisson request processes for
each of the objects are independent, it is possible to start by
analyzing the hit ratio of object at time , . Then,
will be calculated as the sum of individual object hit ratios
weighted by their probability of request as follows:

(1)

An analytical solution for finding for Infinite Cache,
LRU, and FIFO is developed in the following sections. The so-
lution for Infinite Cache is discussed in Section IV. The solution
for LRU and FIFO is described in Section V.

IV. ANALYSIS OF INFINITE CACHE

In the Infinite Cache, an object that enters the cache is never
evicted by a replacement policy. They are merely ejected when
they expire. The state of the cache with respect to an object can
be modeled using a two-stateMarkov chain. State 0 corresponds
to when object is not in the cache. State 1 corresponds to when
object is in the cache. Note that the rate at which the object
moves from state 0 to 1 is equal to the object request rate, and
the rate the process returns to state 0 is equal to the object expiry
rate. The Markov chain flow matrix of object , , is given by

(2)

Assume that the number of objects increases at time
to . If remains fixed to time , then the
probability matrix of object at time , , is calculated using

(3)

where . Note that in (3) is the matrix expo-
nential operator [34]. Thus

(4)

where the notation denotes the element in row and
column of a matrix [33]. The instantaneous hit ratio of ob-
ject at time , , is calculated using (5), where
denotes the probability that object is in state at time , such
that

(5)

The instantaneous hit ratio is then calculated using (1). Note
that calculating for objects requires Markov
chains, each with two states.
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Fig. 1. (a) LRU and (b) FIFO: Markov chains for estimating the lower-bound
instantaneous hit ratio of object .

V. ANALYSIS OF LRU AND FIFO

This section describes an iterative algorithm for estimating
the instantaneous hit ratio for both LRU and FIFO, as-
suming a finite cache capacity . The first iteration of
the algorithm determines a lower-bound hit ratio, and then the
estimate of the hit ratio is improved in the following iterations
until no more improvement can be obtained. In the proposed it-
erative algorithm, a Markov chain, which has states, is
used to model each object in the cache. In this Markov chain,
state 0 corresponds to when object is not in the cache (non-
caching state), and states from 1 to correspond to when ob-
ject is in cache (caching states). The hit ratio of object at
time is simply the probability that object occupies one of
those caching states at time .
The first iteration of the proposed algorithm is described in

Section V-A, while Section V-B discusses how to obtain an
exact estimate for .

A. Estimating Lower-Bound Hit Ratio

Fig. 1(a) shows the LRU Markov chain for estimating the
lower-bound hit ratio of object , . The caching states from
1 to represent how recently an object has been requested. For
example, the Markov chain for an object is in state if it is the
most recently requested object, state if it is the second
most recently requested object, and so on.
In the LRU Markov chain proposed in Fig. 1(a), the lower-

bound hit ratio of object is calculated under two assumptions
that cause the analysis to underestimate the exact hit ratio
for both LRU and FIFO.

First, we assume that a request for any object results
in moving the cached object from a current state to the state

. Therefore, the transition rate for object from any state
to the state , , equals except for ,
where . In LRU, this assumption is only valid
when the object is in a state below the current state of object .
In FIFO, this assumption is only valid when the object is not
cached. The result is an underestimation of hit ratio since the
transition rate is overestimated.
Second, we ignore the case when an object expires

while objects and are in cache. Therefore, the transition rate
for object from a current caching state to the caching state
due to the expiry of object equals zero. In both FIFO and

LRU, this assumption is not valid if the object is in a state
above the current state of object . In this case, the transition
rate of object between caching state and caching state
due to the expiry of object exceeds zero. Therefore, the

second assumption leads to underestimating the hit ratio since
the transition rate, , between caching state and caching
state is underestimated.
The LRUMarkov chain flowmatrix for estimating the lower-

bound hit ratio of object , , is given by

...
...

...
...

...
...

(6)
This flow matrix is used to calculate the lower-bound proba-

bility matrix using

for large (7)

where is the identity matrix [33]. The lower-bound hit ratio,
, is calculated using

(8)

Note that the superscript in , , , and refers
to the iteration number in the iterative algorithm. Note that it is
assumed that the cache is empty at time (i.e.,

).
The lower-bound hit ratio for FIFO is calculated using the

same steps as LRU. The only difference between the Markov
chains of FIFO and LRU is that LRU has additional paths to
caching state from the caching states 1 through , as
shown in Fig. 1. The FIFO Markov chain for estimating the
lower-bound hit ratio of object is shown in Fig. 1(b). The
caching states from 1 to represent the relative time at which
object was brought into the cache. State corresponds to the
most recently cached object. The recency of a cached object de-
creases as the object goes from caching state to the state .
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State 1 corresponds to the oldest cached object. The flow matrix
for this Markov chain is

...
...

...
...

...
...

(9)
Like LRU, the lower-bound probability matrix and the
lower-bound hit ratio are calculated for FIFO using (7)
and (8), respectively.
The overall lower-bound hit ratio for objects, ,

can then be calculated using (1). As stated above, the assump-
tions made in this section underestimate the hit ratio for LRU
and FIFO. In Section V-B, we introduce the modifications re-
quired to obtain an exact estimate for the hit ratio

B. Estimating the Exact Hit Ratio

In this section, the lower-bound hit ratio is refined to
be an exact estimate of instantaneous hit ratio. First, we describe
the second iteration that is used to calculate an enhanced esti-
mate for the hit ratio, , using the lower-bound probability
matrices obtained in the first iteration (i.e., ).
Then, we illustrate how this procedure is repeated in order to
obtain an exact estimate for .
An enhanced estimate of the hit ratio of object , , is

calculated based on two main modifications in the LRU and
FIFO Markov chains. These modifications alter the transition
rates between caching state and the states and (i.e.,

and ). As discussed in Section V-A, calculating
overestimates in LRU and FIFO. To overcome

this problem in LRU, we exclude from the requests for those
objects that currently occupy caching states . Thus, in
Fig. 2(a) is replaced by in the LRU Markov chain such
that

(10)

Similarly, in FIFO, we exclude from the requests for ob-
jects that are currently cached. Thus, in Fig. 2(b) is replaced
by in the FIFO Markov chain such that

(11)

The problem of underestimating in LRU and FIFO
can be solved by incorporating the expiry rate of those objects
that currently occupy caching states . Thus, a quantity

, where , is added to the LRU and FIFO Markov
chains as shown in Fig. 2(a) and 2(b) such that

(12)

Fig. 2. (a) LRU and (b) FIFO: Markov chains for enhanced estimate for instan-
taneous hit ratio .

TABLE I
ITERATIVE ALGORITHM FOR ESTIMATING THE EXACT INSTANTANEOUS

HIT RATIO USING LRU OR FIFO

The final Markov chains for LRU and FIFO after applying
the two proposed modifications are shown in Fig. 2(a) and (b).
Similar to the process in Section V-A, a flow matrix can
be defined for LRU or FIFO using the Markov chains illus-
trated in Fig. 2. Afterwards, enhanced estimates for the prob-
ability matrix and the hit ratio, are calculated ac-
cording to (7) and (8), respectively. In order to obtain an exact
estimate for the hit ratio , the procedure used to obtain

is repeated to obtain further enhanced estimates of the hit
ratio until no more enhancement is observed
as shown in Table I.
Note that calculating an enhanced estimate of the hit ratio,
, requires using the previous estimate for the probability

matrices (i.e., ). Thus, the exact estimate
of the hit ratio, , requires the exact probability matrices.
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On the other hand, since the exact probability matrices are ini-
tially unknown, we started by finding the lower-bound prob-
ability matrices, which basically produce the lower-bound hit
ratio. Afterwards, the probability matrices are enhanced itera-
tively until the exact probability matrices and exact hit ratio are
obtained.
This proposed method of calculating can be considered

a contraction mapping [35], [36]. The Appendix contains a dis-
cussion of the convergence of the algorithm.

C. Discussion

The proposed Markov chain model provides a useful insight
into the operation of LRU and FIFO. As shown in Fig. 2, the
transition paths between caching states of FIFO and LRU are
similar except that in LRU there are additional paths, with equal
rates , to caching state from caching states 1 through .
These additional paths in LRU exist since any object becomes
the most recently requested object as soon as it is requested,
regardless of its current state.
The additional paths in LRU allow the current popular

objects, which are recently having high request rates, to be
organized in the higher caching states, while the current un-
popular objects are more likely to occupy the noncaching state.
Therefore, it is expected that LRU achieves better instantaneous
hit ratio than FIFO, especially as the Zipf slope increases. On
the other hand, the main drawback of LRU and FIFO is that
one-time requested objects are immediately cached at the
highest caching state . One-time requested objects may fur-
ther degrade the performance of FIFO since the cached object
cannot change its position relative to other cached objects.
Therefore, the key to enhance FIFO is to prevent unpopular
objects from immediately occupying caching state , as dis-
cussed in Section VI.

VI. FB-FIFO REPLACEMENT POLICY

Unlike Perfect-LFU, LRU and FIFO do not store any infor-
mation about the popularity of objects (i.e., number of requests),
whether they are currently cached or not. Hence, LRU and FIFO
can be easily implemented with a linked list, with length .
However, LRU requires more overhead on every cache hit to
an object in order to change its state to (i.e., move it to the
front of the list as the most recently requested object) [37].
Many replacement policies are introduced in order to enhance
the steady-state hit ratio of LRU, such as LRU-k and ARC, and
LRFU [38]–[40]. These policies are even more complex than
LRU, and they require additional resources.
In Section V, the Markov chain representation of FIFO

showed that the hit ratio degrades because FIFO allows all
new objects, unpopular or not, to occupy state . State is
the position in the chain that allows the object to remain in the
cache for the maximum amount of time. In this section, we
take advantage of this insight to develop an improved version
of FIFO algorithm, called FB-FIFO.
The main idea behind FB-FIFO is to create a variable-size

protected segment in the cache for objects that are re-
quested more than once within a short time span. The remainder
of the cache is considered an unprotected segment . In
FB-FIFO, it is assumed that both cache segments are managed

separately with the FIFO algorithm. When an uncached object
is requested, the object is moved to as the newest object.
If is full, the object that was brought into earliest will
be ejected from the cache. If an object in experiences a
cache hit, the object is moved to as the newest object. If
is full, the object that was brought into earliest will move
back to as the newest object. A counter, , determines the
capacity of , while the capacity of is , such that

, and . The initial value of is set
to zero at time . Every time an object in experiences
a cache hit, the value of increments by one if . If

, cannot increment further. Note that if an object
in expires, it will be ejected from the cache and the value of
decrements by one. Note that objects in do not move back

to if .
As increases, the probability that a new cached object

lingers in decreases. When a new object is cached in , it
will be ejected if the next requests are all cache misses.
Therefore, as increases, the probability that the objects that
are moved to (as the newest objects) are popular increases.
Furthermore, the one-time requested objects will not affect the

queue. Hence, FB-FIFO is expected to outperform both
LRU and FIFO, which can easily be polluted by a sequence of
requests for one-time requested objects.
FB-FIFO allows the current popular objects to be cached in
. In FB-FIFO, any object moves from to when it is

requested within the next requests (excluding cache hits),
regardless of the past average request rate of this object. There-
fore, FB-FIFO is expected to adapt faster than Perfect-LFU
to the changes in the popularity of the cached objects (i.e.,
FB-FIFO is more robust than Perfect-LFU), especially when
the cached objects accumulate many requests over time. In this
case, Perfect-LFU does not eject these cached objects even if
they are never requested again. LFU-Aging [18] overcomes this
problem by periodically reducing the counter values associated
with cached objects.
The robustness of FB-FIFO may also decrease for small

cache capacities, when , and objects do not expire
(i.e., cannot decrease). Assuming , only
very popular objects can replace the past popular objects in
since the single object in is ejected on the next cache

miss. To overcome this problem, more complicated versions of
FB-FIFO may be implemented to reset to zero after a certain
number of cache misses. In this paper, we merely evaluate the
simplest version of the proposed FB-FIFO, where decreases
if and only if a cached object in expires. Note that as
the object expiry rate increases, the robustness of FB-FIFO
improves for small caches since FB-FIFO allows the expired
past popular objects in to be ejected from the cache.
Note that determining a static value for (i.e.,

fixed capacities for and throughout the evaluation
interval) reduces the instantaneous hit ratio for FB-FIFO. If

is increased, the speed at which fills up decreases.
Consequently, the hit ratio increases very slowly in the tran-
sient period starting from an empty cache. Second, if
is decreased, the number of popular objects that can be stored
in decreases. Thus, the instantaneous hit ratio for FB-FIFO
decreases until FB-FIFO matches FIFO when .
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TABLE II
OBJECT SIZE MODEL IN SIMULATIONS

TABLE III
EVALUATION FACTORS AND LEVELS

In Section VII, we compare the instantaneous hit ratio of
Perfect-LFU, FB-FIFO, LRU, and FIFO. Note that no analyt-
ical results are provided for FB-FIFO or Perfect-LFU.

VII. EVALUATION

An event-driven simulator was developed using C++ to verify
the analytical results for Infinite Cache, LRU, and FIFO. Also,
FB-FIFO and Perfect-LFU are implemented in the simulations
to allow a comparison to LRU and FIFO. The analytical in-
stantaneous hit ratios are compared to the mean of the simu-
lated instantaneous hit ratios generated using 1000 workload
profiles that statistically conform with the proposed mathemat-
ical models in Section III.
The instantaneous hit ratio is calculated over a duration

of 3–20 h in -h intervals as a function of cache ca-
pacity, object expiry rate, and request rate. Note that the analysis
estimates the instantaneous hit ratio at a specific time , while
the simulator smooths the instantaneous hit ratio over a small
time interval . Using small time intervals between cal-
culations eliminates the effect of this difference.
In the simulations, it is assumed that the object size follows

a lognormal distribution [18] as listed in Table II. In the anal-
ysis and simulations, the ratio between the cache size and the
average object size (i.e., the cache capacity) varies from 100 to
500. Though the analysis estimates the instantaneous hit ratio
assuming objects with different expiry rates, for simplicity, the
instantaneous hit ratio is predicted assuming that all the objects
have the same expiry rate, . The request rates that vary
from 200 to 500 requests/h are chosen such that the evolution of
the instantaneous hit ratio can be captured in the transient state.
The analysis and simulator adopt the settings shown in Table III.
Note that the values in Tables II and III are meant to illustrate the
concepts in this paper rather than representing empirical work-
load values.
In Section VII-A, we evaluate the proposed replacement poli-

cies assuming a fixed number of objects. Section VII-B illus-
trates the evaluation of replacement policies assuming that the
Web server generates new popular objects periodically. In the
following, all plots show the hit ratio as a function of time. The
markers in these plots represent the simulation results, while

Fig. 3. Instantaneous hit ratio ( , , ).

analysis results that correspond to each simulated scenario are
shown with solid lines.

A. Evaluation of Replacement Policies Assuming Fixed
Number of Objects

In this section, the instantaneous hit ratio is plotted
within interval starting from an empty cache at time ,
where min. Within this interval, it is assumed that the
number of objects and the Zipf slope are fixed ( ,

).
Fig. 3 shows a close match between analysis and simulation

results for Infinite Cache, LRU, and FIFO assuming a cache
capacity of , cached objects that do not expire (i.e.,

), and request rate of . This plot also indicates
that the hit ratio of the different replacement policies evolve
differently as a function of time. In Fig. 3, Infinite Cache, LRU,
FIFO, FB-FIFO, and Perfect-LFU have the same hit ratio until

min, where denotes the time when the cache
becomes full. After , the replacement policy starts replacing
some cached objects, causing the hit ratio to increase in case of
LRU, FB-FIFO, and Perfect-LFU, or decrease in case of FIFO.
Unlike the other replacement policies, Fig. 3 shows that FIFO

reaches a maximum hit ratio of 31.4% during the transient pe-
riod. Afterwards, FIFO decreases again and keeps fluctuating
and it reaches the steady-state hit ratio of 29.5% after 210 min.
Unlike the other replacement policies, FIFO does not exploit
the popularity feature of objects. Thus, it is likely that some of
the most popular objects that are cached within the first 30 min
will reside at low caching states at . Note that the hit ratio
increases rapidly within the first 30 min when a big percentage
of the most popular objects are cached. Hence, FIFO starts re-
placing a portion of the most popular objects with less popular
ones after , which causes the hit ratio to drop. Afterwards,
the hit ratio will increase again as FIFO starts caching the most
popular objects, which could be replaced after , again. An
oscillation in hit ratio continues to be observed as the most pop-
ular objects work their way through the cache and get ejected.
Eventually, steady state is reached once FIFO is able to main-
tain a fixed percentage of the most popular objects in the cache.
Fig. 3 shows that the proposed FB-FIFO outperforms both

LRU and FIFO, while FB-FIFO achieves the same hit ratio
as Perfect-LFU during the evaluation interval . Note that
Perfect-LFU and FB-FIFO start outperforming LRU at time

min. Before , the three replacement policies main-
tain the same objects in the cache. However, unlike Perfect-LFU
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Fig. 4. Instantaneous hit ratio ( , ). (a) . (b) .

TABLE IV
INSTANTANEOUS HIT RATIO FOR FIFO, WHERE ,

and FB-FIFO, LRU suffers from one-time requested objects,
which constrains the increase in the percentage of the cached
popular objects after .
The remainder of this section discusses the impact of cache

capacity, object expiry, and request rate on the considered re-
placement policies.
1) Impact of Cache Capacity: Fig. 4 shows the impact of

cache capacity on for the considered replacement poli-
cies. Fig. 4 shows that as decreases, the cache fills up quickly,
and thus Perfect-LFU, FB-FIFO, and LRU start outperforming
FIFO sooner.
Fig. 4(a) shows that FIFO fluctuates more rapidly and reaches

steady state faster when decreases to 300. Table IV helps illus-
trating the behavior for FIFO. Fig. 4(b) shows that when de-
creases to 100, FIFO fluctuation diminishes. When decreases,
the percentage of the most popular objects that are cached when
the cache fills up at decreases. Therefore, after , the
probability that the portion of the popular objects that reside at
low caching states will be replaced by objects with similar pop-
ularity increases. Consequently, the transient behavior of FIFO
is smoothed faster as decreases.
Fig. 4 shows that as decreases, FB-FIFO outperforms both

LRU and FIFO more rapidly. Moreover, Perfect-LFU outper-
forms FB-FIFO after a time that decreases with . For ex-
ample, for and for .
Note that if any replacement policy keeps similar percentage
of the popular objects as Perfect-LFU, that replacement policy

Fig. 5. Instantaneous hit ratio ( , ). (a) ; (b) .

Fig. 6. Relative change in the instantaneous hit ratio when increases from
0.5 to 1 ( , ).

achieves a hit ratio similar to Perfect-LFU. Therefore, after ,
the difference between Perfect-LFU and FB-FIFO is small. This
difference increases over time as Perfect-LFU identifies more
of the popular objects. As increases, it takes longer for Per-
fect-LFU to distinguish popular objects with request rates that
are too low to be identified by FB-FIFO. Thus, FB-FIFO tracks
Perfect-LFU for a longer time.
2) Impact of Object Expiry Rate: Fig. 5 shows the impact

of the object expiry rate on . Fig. 5 shows that as
increases, decreases since the rate at which the object
is ejected from the cache increases. Moreover, reaches
steady state faster as increases. Also, note that the transient
behavior of FIFO diminishes as increases. As discussed in
Section VII-A.1, this is due to the decrease in the percentage of
the most popular objects that are cached when the cache fills up.
Let and denote the instantaneous hit ratio in

Fig. 5(a) and (b), respectively. Fig. 6 shows the relative change
in the instantaneous hit ratio (i.e., ).
In Fig. 6, the results show that Infinite Cache is themost sensi-

tive to , followed by Perfect-LFU, FB-FIFO, LRU, and FIFO.
As increases, the popular objects are ejected due to object
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Fig. 7. Instantaneous hit ratio ( , , ).

expiry, rather than requests for uncached objects. Thus, the re-
placement policies that minimize the ejection of popular objects
are the more sensitive to .
3) Impact of Request Rate: Figs. 7 and 5(a) show that, in

the transient state, the for all the replacement policies de-
creases when decreases to 250 requests/h, while .
This is consistent with the results for the steady-state hit ratio of
Infinite Cache generated in [10]. Moreover, comparing Figs. 7
and 5(a) shows that the relative increase in with respect to
improves FB-FIFO more rapidly than LRU and FIFO, which

improves the least.
Comparing Figs. 7 and 5(b) shows that doubling and

results in the same steady-state hit ratio. However, the steady
state is reached faster. For example, Perfect-LFU, FB-FIFO, and
LRU reach steady state at time when , while
the time required to reach steady state is almost doubled when

.

B. Evaluation of Replacement Policies as the Number of
Objects Increases

In real networks, the number of objects stored on the Web
servers is growing continuously [41]. New objects with different
popularity may be generated causing changes in the hit ratio that
the cache can achieve over time.
Fig. 8 shows the instantaneous hit ratio for the replacement

policies over 20 hours, assuming that the initial number of ob-
jects at time is . Every h,
50 new objects are generated. It is assumed that the 50 new gen-
erated objects become the most popular objects within the next

. For example, the most popular object within the interval
[0, 5] h becomes the 50th most popular object within the interval
(5,10] h, and the 100th most popular object within the interval
(10, 15] h. Similarly, the most popular object that is generated
at h becomes the 50th most popular object within the in-
terval (10, 15] h, and so on. Therefore, the initial popularity of
the cached objects degrades rapidly with time. Fig. 8 shows that
the analysis accurately estimates the instantaneous hit ratio for
LRU and FIFO. Also, Fig. 8 illustrates the case when the cache
does not reach steady state. Hence, the only way to estimate the
hit ratio experienced by Web users is to calculate the instanta-
neous hit ratio.
Fig. 8(a) shows that for , FB-FIFO adapts faster than

the other replacement policies when new objects are generated
at time h. Assume that the robustness of the replace-
ment policy is denoted by the instantaneous hit ratio achieved
shortly after changes (for example, after

Fig. 8. Instantaneous hit ratio ( , ). (a) . (b) .

changes at ). Fig. 8(a) shows that FB-FIFO is the
most robust replacement policy after h. After h,
LRU becomes the most robust replacement policy followed by
FIFO, FB-FIFO, and then Perfect-LFU. At , the popu-
larity of the cached objects decreases greatly for Perfect-LFU
and FB-FIFO every time 50 new popular objects are gener-
ated. Hence, Perfect-LFU and FB-FIFO degrade greatly over
time and they take longer to eject past popular objects. After

h, it might be useful for FB-FIFO to reset the counter to
zero, or decrease its counter value on every cache miss, which
may help remove old popular objects faster, as discussed in
Section VI. Also, as discussed in Section VI, as increases
FB-FIFO becomes more robust as shown in Fig. 8(b).
Note that the ratio between the number of new popular objects

and the cache capacity plays a key role in the relative robustness
of the replacement policies. Fig. 9(a) shows that as increases
to 300, after h, FB-FIFO becomes the most robust
replacement policy followed by LRU, Perfect-LFU, and FIFO.
The relative robustness of FB-FIFO increases each time new ob-
jects are generated. As discussed in Section VI, FB-FIFO caches
the current popular objects in faster as increases, regard-
less of the past request rate of these objects. Fig. 9(b) shows
that as increases to 500, FB-FIFO matches Perfect-LFU for
a longer time, as discussed in Section VII-A.1. Furthermore,
Fig. 9(a) and (b) shows that after h, FB-FIFO out-
performs Perfect-LFU for a longer duration when increases
from 300 to 500. As discussed in Section VI, Perfect-LFU is
affected more than FB-FIFO when more cached objects accu-
mulate many requests over time. In this case, Perfect-LFU takes
longer than FB-FIFO to identify the new popular objects and get
rid of the old ones.

VIII. CONCLUSION

In this paper, a novelMarkov chain analysis for estimating the
instantaneous hit ratio of Infinite Cache, LRU, and FIFOwas in-
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Fig. 9. Instantaneous hit ratio ( , ). (a) . (b) .

troduced. Moreover, a new replacement policy (FB-FIFO) was
developed based on the insights gained from the proposed an-
alytical model. The results showed how the instantaneous hit
ratio of the considered replacement policies evolves with time
starting from an empty cache.
Assuming a fixed number of objects stored at the Web server,

the results show that the hit ratio reaches steady state within
a period that depends on cache capacity, object expiry rate,
and request rate. In this case, results suggested that FB-FIFO
outperforms LRU and FIFO in the steady state, especially for
small cache capacities. On the other hand, these results change
when the Web server generates new popular objects period-
ically. Therefore, evaluating the hit ratio of the replacement
policies in the steady state assuming a fixed access pattern (i.e.,
fixed number of objects, objects popularity, request rate, etc.)
can be misleading. Furthermore, the results show that when
the Web server generates new popular objects periodically, the
Web users may experience different hit ratios when they initiate
requests at different times. In this case, the hit ratio experienced
by these Web users can only be quantified by calculating the
instantaneous hit ratio.

APPENDIX

This appendix discusses the convergence of the proposed it-
erative method for calculating the Markov chain probability
vector from the per-
spective of contraction mapping theorem (CMT). According to
the CMT, the sequence , where , converges
to a unique fixed point , where

, if the Jacobian
norm of is less than one (i.e., ) [35].
Markov chain balance equations can be used to show conver-
gence for a scalar function under the following assumptions.

(A.1) The cache is in steady state (i.e., ). Thus,
.

(A.2) The objects are requested with equal probability (i.e.,
). Thus, .

Also, in order to simplify the use of the balance equations, we
assume the following.
(A.3) Objects do not expire (i.e., ).
In the CMT [35], [36], is a contraction

mapping and converges to a unique fixed point, , starting
from any initial point, , if we have the following.
(C.1) is a continuous function.
(C.2) . Also, (C.2) can be general-

ized to the following:
(C.2.1) , .

For FIFO, according to (11) and using (A.2), we have

(13)

Using (13) and (A.3) to solve the balance equations and calcu-
late the limiting probability , we have:

where , for large , or equivalently

(14)

From (14), satisfies (C.1). Also

(15)

(16)

Note that the analysis in Section V-A calculates assuming
that all objects are not in cache (i.e., ). Hence, the
analysis initializes then decreases iteratively until
reaching the fixed point , according to (14).
Therefore, we are only concerned that the maximum slope of

, which occurs at the fixed point , is less than 1 (i.e.,
, or ). From (15), satis-

fies (C.2) even for very small (e.g., for ,
). Also, (16) shows that the analysis

converges to when is small even when
is initialized by a small value that is bigger than zero (e.g., for

and , ).
Similarly for LRU, according to (10) and using (A.2), we

have

(17)

where . Using (17) and the balance equations to
calculate the limiting probabilities , , and , we have

(18)

(19)

(20)
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For , where

(21)

Therefore, from (18)–(21), we have

for large

(22)

where is constant. According to (20) and
(21), the summation of the probabilities , where
, ultimately equals a scaled version of , which is con-

stant. From (22), satisfies (C.1).
Note that the difference between the and

is small, especially when is large (or
when is large). Therefore, the product in (22) that uses
the true values of can be approximated by using only one
value, , such that

is constant. (23)

From (23), we have

(24)

For large (i.e., ), (24) can be rewritten as

(25)

Assuming , satisfies (C.2), where
(25) guarantees that even for small at small
. For example, if and , then

.
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