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Abstract—The explosive growth of cellular traffic and its highly
dynamic nature often make it increasingly expensive for a cellular
service provider to provision enough cellular resources to support
the peak traffic demands. In this paper, we propose iDEAL, a novel
auction-based incentive framework that allows a cellular service
provider to leverage resources from third-party resource owners
on demand by buying capacity whenever needed through reverse
auctions. iDEAL has several distinctive features: 1) iDEAL explic-
itly accounts for the diverse spatial coverage of different resources
and can effectively foster competition among third-party resource
owners in different regions, resulting in significant savings to the
cellular service provider. 2) iDEAL provides revenue incentives for
third-party resource owners to participate in the reverse auction
and be truthful in the bidding process. 3) iDEAL is provably effi-
cient. 4) iDEAL effectively guards against collusion. 5) iDEAL ef-
fectively copes with the dynamic nature of traffic demands. In ad-
dition, iDEAL has useful extensions that address important prac-
tical issues. Extensive evaluation based on real traces from a large
US cellular service provider clearly demonstrates the effectiveness
of our approach. We further demonstrate the feasibility of iDEAL
using a prototype implementation.

Index Terms—Cellular networks, economics, optimization, wire-
less networks.

I. INTRODUCTION

S THE world embraces wireless and mobile technolo-

gies, cellular data traffic is growing exponentially, and
this trend is expected to continue [13]. Given the scarcity of
spectrum resources, it is becoming increasingly expensive for
a single cellular service provider to provision sufficient cellular
resources to support all its consumers all the time, especially
given the significant variability in demand (e.g., cellular traffic
follows strong diurnal and weekly patterns [31], [38]). The cur-
rent best practice is for service providers to augment the cellular
network capacity by deploying alternative wireless technologies
(e.g., Wi-Fi and femtocells, which potentially have higher ca-
pacity but limited communication range) on their own. While
this approach is helpful in alleviating the stress on the busiest
cellular regions in the short term, it needs to be complemented in
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the long-term by dynamically utilizing the many Wi-Fi hotspots
and femtocells that have already been deployed by third parties.

We propose a solution that enables a service provider
to leverage resources on demand from third-party resource
owners by buying capacity whenever needed. Measurement
studies show that many third-party Wi-Fi hotspots and femto-
cells have significant spare capacity even during busy hours
(e.g., [29] analyzes Wi-Fi utilization in a wide range of sce-
narios and finds that in all cases the utilization is below 40%).
We do not necessarily limit ourselves to considering Wi-Fi
resources. For example, when one cellular network is under
stress, other cellular service providers in the same area may
have spare cellular resources to provide a dynamic roaming
service. On-demand purchase of such third-party spare re-
sources can potentially lead to a win-win solution: The cellular
service provider achieves significant savings by not having to
provision for the peak traffic demands; the third-party resource
owners gain additional revenue from the otherwise wasted
spare capacity; the overall user experience is also improved. In
order for this approach to be successful, however, it is essential
to have an incentive framework that can effectively foster
collaboration while guarding against nontruthful and collusive
behavior.

Our Approach: Incentivizing Cellular Offloading via Auc-
tions: We propose iDEAL, a novel auction-based incentive
framework to enable dynamic offloading of cellular traffic.
In iDEAL, a cellular service provider purchases bandwidth
on demand from third-party resource owners, who may be a
Wi-Fi hotspot owner, a femtocell owner, or another cellular
service provider. This auction problem is naturally formulated
as a reverse auction, where the goods of interest are bandwidth
resources, third-party hotspot owners serve as sellers (i.e.,
bidders or auctioneers) and submit their bids while provider A
or a trusted third party serves as an auctioneer, who evaluates
the bids from all hotspot owners and makes decisions regarding
whose services to purchase in order to satisfy A’s traffic de-
mands and minimize A’s total cost. Each bidder submits a bid
that specifies the total amount of bandwidth it offers in the next
time interval and the unit price it asks for. After collecting all
the bids, the cellular service provider determines: 1) an alloca-
tion, i.e., how to allocate its traffic between different third-party
resource owners (depending on the region they cover) and its
own cellular network; and 2) a price, i.e., how much it pays
each third-party resource owner that offloads cellular traffic.

The use of reverse auction is motivated by the following ob-
servations. First, a key challenge in utilizing resources from
third-party resource owners is that we do not know their cost
function. Their cost function may be based on multiple con-
siderations, some of which may not be revealed to the cellular
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service provider. Reverse auctions provide a formal framework
for third-party resource owners to express the price they de-
mand and for the cellular service provider to optimize the al-
location based on the received bids. Second, by using reverse
auctions, the cellular service provider avoids having to negotiate
a long-term bilateral agreement with each individual third-party
resource owner. Negotiating such long-term agreements is dif-
ficult and possibly inefficient due to dynamic traffic demands
and resource availability. Instead, the cellular service provider
can now establish short-term contracts with third-party resource
providers. It also potentially cuts costs by leveraging competi-
tion across third-party resource owners. Third, reverse auctions
can be incrementally deployed today, yielding savings to the cel-
lular service provider even when only a subset of third-party re-
source owners participate.

Unique Challenges: While reverse auction has been applied
to cellular offloading in the past (e.g., [12]), our problem setting
poses several unique challenges. Despite their importance, none
of these challenges has been considered earlier.

* Diverse spatial coverage: Cellular resources can serve
traffic anywhere in a cell sector (albeit at different rates
depending on path loss etc.), whereas Wi-Fi hotspots and
femtocells have a much more limited communication
range, making it essential to consider the spatial cov-
erage of different resources. However, one cannot simply
partition resources into separate regions and launch in-
dependent reverse auctions within each region because
the longer-range cellular resource introduces coupling
between the Wi-Fi hotspots or femtocells in different
regions. For example, buying more resources from a
cheaper Wi-Fi hotspot in one region frees up more cellular
resources, which reduces the amount of cellular traffic
to be offloaded in regions with more expensive Wi-Fi
hotspots.

* Traffic uncertainty: Cellular traffic is highly dynamic and
unpredictable. Since the cellular service provider has to
purchase third-party resources based on predicted traffic
demands at a future time, it can easily result in underprovi-
sioning or overprovisioning without an effective technique
to cope with traffic uncertainties. In contrast, in conven-
tional reverse auction settings, the total amount of goods
that the buyer wants is typically known a priori.

* Nontruthful bidding and collusion. 1t is essential for us to
explicitly guard against both nontruthful bidding and col-
lusion. Due to the distributed nature of hotspot locations,
collusion in our context is quite different from what was
studied previously and calls for a new study to understand
possible collusion strategies and mitigate them.

Contributions: Our paper makes three main contributions.

1) We design the iDEAL incentive framework to effectively
address the above unique challenges. Compared to con-
ventional mechanisms for reverse auctions, iDEAL has
the following distinctive features: 1) iDEAL explicitly
accounts for the spatial coverage of different resources
and can effectively foster competition among third-party
resource owners in different regions, resulting in signif-
icant savings to the cellular service provider. 2) iDEAL
incentivizes bidders (i.e., third-party resource owners) to
participate in the reverse auction and to be truthful in their
bidding. 3) iDEAL is provably efficient in that the winners
are the bidders who have the lowest valuation of their
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resources. 4) iDEAL can effectively mitigate collusion.
5) iDEAL can effectively cope with the highly dynamic
nature of traffic demands.

2) We present useful extensions to iDEAL: 1) support gen-
eral bidding curves, which gives a hotspot owner the flex-
ibility to submit its ask price in the form of a curve, such
that different unit price is used when different amount of
capacity is sold; 2) support femtocell offloading and dy-
namic roaming; 3) incorporate quality-of-service consid-
eration (in addition to cost); 4) potentially delay demands
that are delay-tolerant to further reduce cost and improve
efficiency; and 5) determine which users’ traffic to offload.

3) We extensively evaluate iDEAL using simulation based
on real traces from one of the largest US cellular service
providers. Our results clearly demonstrate the effec-
tiveness of our approach. We further demonstrate the
feasibility of our approach using a simple prototype
implementation.

II. PROBLEM FORMULATION

In this section, we formulate the problem of offloading cel-
lular traffic as a reverse auction. The offloading is transparent
to clients and does not affect cellular pricing (i.e., users pay for
the data usage regardless of whether it is carried by the cellular
provider or third-party resource owners).

Basic Auction Settings: Consider a cellular network A that
is interested in purchasing and leveraging spare resources from
third-party Wi-Fi hotspots to satisfy traffic demands from its
customers. The third-party hotspot owners should be rewarded
for opening up their services to A’s customers. To facilitate such
cooperation, provider A can set up an auction to let third-party
hotspot owners submit bids to offer their network resources,
e.g., dollars per bit rate for unit time (e.g., 1 h) that a third-party
hotspot owner offers.

This problem is naturally formulated as a reverse auction.
Since the demand changes over time, e.g., due to diurnal varia-
tions [31], the auction takes place periodically or whenever de-
mand changes. The auction frequency is chosen to balance the
overhead and the accuracy of traffic demand estimation.

The cellular network is shared across a relatively large area
typically called a cell site. A site is further subdivided into three
or more sectors. Cellular resource in different sectors is rela-
tively independent, so we only consider a single sector. The
same solution can be applied independently to other sectors.
The sector can be considered to be divided into 7w small regions
based on locations of Wi-Fi hotspots and Wi-Fi range as shown
in Fig. 1. A Wi-Fi hotspot can satisfy traffic demands only in its
region.

Naive Solution: A simple approach is to statically partition
the cellular resource into different regions and determine the
amount of Wi-Fi resource needed in each region based on the
amount of user demand in the region. Then, we conduct a local
auction within a region to utilize the cellular resource and Wi-Fi
resources dedicated to the region. We call it static local auction.
While simple, this approach has several important limitations:
1) Due to limited Wi-Fi coverage, the number of hotspots in a
region is limited, i.e., the competition is limited. However, ade-
quate competition is essential for an auction-based approach to
be effective. 2) This formulation treats different regions equally,
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Fig. 1. Sample cellular sector and its Wi-Fi regions.

however the service provider may view different regions differ-
ently because different regions may have different spectrum ef-
ficiencies due to different signal-to-interference-plus-noise ratio
(SINR) from the base station. 3) The static allocation cannot
effectively take into account the available Wi-Fi resources and
their bids across different regions. For example, even when a re-
gion has higher traffic demand, we may or may not need to allo-
cate more cellular resources to the region depending on: a) how
many Wi-Fi hotspots are in the region; b) what are their prices;
and c) how the Wi-Fi hotspots and their prices compare with
those in other regions. If there are more Wi-Fi hotspots in a re-
gion offering cheaper bids than in the other regions, we can al-
locate less cellular resources.

Design Goals: We seek an auction scheme to: 1) account
for different spatial coverage of resources, which has not been
considered in existing work; 2) cope with dynamic traffic de-
mands; 3) achieve high efficiency, where the winners in the auc-
tion are the hotspot owners who really can provide the service at
a cheaper price, thereby improving the overall system efficiency
and social welfare; 4) promote truthful bidding to prevent bid-
ders from gaming the system, effectively discover price to en-
sure that the overall system is efficient, and avoid unnecessary
system fluctuation due to gaming, as unwanted switching be-
tween Wi-Fiand 3G can negatively impact user experience [17];
5) lower cost, which is natural but is challenging to achieve si-
multaneously with truthfulness; and 6) guard against collusion.

ITII. OUR SOLUTION: iDEAL

In this section, we introduce our solution: iDEAL. We start
by designing the auction setting that fosters more competition
and captures the service provider’s regional preferences. Then,
we describe the two stages of iDEAL: 1) allocation, i.e., deter-
mine how to allocate traffic among third-party resource owners
and the cellular network itself to minimize cost given the bids;
2) pricing, i.e., decide how much should be paid to individual
third-party resource owners in order to provide enough incen-
tives for them to be truthful. Optimal allocation does not depend
on pricing, but assumes all sellers are truthful. Pricing depends
on the allocation and is designed so that staying truthful is the
seller’s optimal strategy. Table I summarizes the key notations.

A. iDEAL Auction Setting

Third-Party Wi-Fi Resources and Bids: Suppose n third-
party hotspot owners offer their resources to the cellular service
provider by submitting their bids. Let A; = {A;,p;} denote
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TABLE 1
NOTATIONS

m number of regions in a cellular sector
n number of sellers in a cellular sector

d; traffic demand in region ¢

[ cellular capacity in region ¢

e; spectrum efficiency of cellular network in region 4
z total cellular spectrum usage: z = > 7" ¢;/e;

T total capacity bought from seller j
Dj the unit price seller j asks for

the Wi-Fi capacity offered by seller j
cellular cost function

the region that seller j belongs to

26)
7G)

hotspot owner j’s bid, which indicates hotspot owner j wants
to sell A; amount of bandwidth at a price p; per bit per second.
The bids are nonatomic (i.e., a hotspot owner is willing to sell a
part of the capacity it offers). Function f{j) returns the region
where hotspot owner j sells its capacity (e.g., f(j) = ¢ means
hotspot owner j sells its capacity in region #). For simplicity,
we assume that each hotspot owner ; sells capacity in a single
region, i.e., regions do not overlap. In Section IV, we show
how to extend our approach to support overlapping regions.
As Wi-Fi may not cover the whole sector, areas without Wi-Fi
coverage can be treated as special regions with no Wi-Fi bids.

Cellular Resources as a Virtual Bid: Let the traffic demand
vector be D = {dy,da,...,dn}, where d; is the demand in
region 7. In order to effectively leverage both third-party and
cellular resources, we let the service provider also participate
in the auction by submitting a virtual bid. The virtual bid is in
the form of a cost function F'(z), where z is the total amount of
spectrum used in the entire cellular sector. Let ¢; be the cellular
capacity in region ¢, and let 2 ; be the total capacity bought from
hotspot owner j. To satisfy the cellular traffic demand d; in each
region ¢, we must have: ¢; + Zj:f(j):i x; > d;. Since different
regions may have different spectrum efficiency, we denote the
actual spectrum usage in region ¢ as ¢; /e;, where ¢; is the spec-
trum efficiency in region z. Thus, the total spectrum usage is
z = 2?7:1 cife.

We consider F'(z) to be a piecewise linear convex function,
capturing the fact that, below a certain value, the cost (reflecting
sunk cost [34]) is very low because the service provider has al-
ready invested in buying the spectrum and needs to keep the
system running; as the cellular network becomes more loaded,
the cost increases; and once it is overloaded, the cost increases
sharply to capture the high cost of congestion. Thus, z is not lim-
ited by the available spectrum and can go to infinity. A similar
convex cost function has been widely used in modeling conges-
tion cost in the Internet (e.g., [18], [28], and [30]).

Because the cellular resource in the virtual bid can be used
in any region in the sector, it introduces coupling between the
regions. The entire sector can now be viewed as one auction in-
stead of several independent ones as in the naive solution. Even
if the number of hotspots in one region is small, its hotspots are
not guaranteed to win since the auction may buy more Wi-Fi
from other regions and save the cellular resource for this re-
gion, i.e., hotspots compete not only within their regions, but
also across regions. We now see a new type of competition,
which we call interregion competition in addition to intraregion
competition.

Auction Objective: The goal of the cellular service provider
is to minimize the total Wi-Fi and cellular cost, while satisfying
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> Input : d;, e, N\j, pj, F(2)
> Output : xj, ¢;, 2
minimize: Zj pj *xj + F(2)

subject to:
CI] Y, @y +er=di Vi=1,2...m
[C2] > " cifei==
[C3] 0<x; <Aj Vi=1,2,...,n
[C4] 0<¢; Vi=1,2,...,m

Fig. 2. Problem formulation to optimize allocation.

the customers’ demands (i.e., ¢; + > GifGy=i Ti > d;) and of-
fering appropriate incentives to the third-party Wi-Fi hotspot
owners to share their resources.

B. Preparation: (Static) Global Allocation

We first ignore traffic variations and develop techniques to
effectively utilize both cellular and Wi-Fi resources in serving
user traffic demands.

We formulate a global resource allocation problem as a
linear program in Fig. 2. The formulation effectively captures
global cellular resources and local Wi-Fi resources by treating
the cellular resource as a single resource with a single bid. As
shown, our goal is to minimize the sum of total Wi-Fi cost
(based on their bids) plus cellular cost £'(z). The constraint [C1]
ensures that we have enough Wi-Fi and cellular resources to
satisfy traffic demands in each region i. The constraint [C2]
relates the cellular capacity with the cellular spectrum. The
constraints [C3] and [C4] put upper and lower bounds on %;
and ¢;. Since there is no upper bound on z, there is always
a feasible solution. When z increases beyond the available
spectrum, F(z) grows rapidly to reflect high congestion cost.
This problem can be solved efficiently using linear program
solvers (e.g., CPLEX).

C. iDEAL Dynamic Global Allocation

Traffic demand changes over time and is challenging to pre-
dict accurately. Based on the history of observed demand vec-
tors, we can optimize for the representative demand vectors that
are likely to occur in the next time interval. Our goal is to find
the allocation to minimize the worst-case cost for these repre-
sentative demand vectors.

Algorithm: Formally, suppose there are K historical demand
vectors, denoted as Dy, = (dg1,dga, -+, dpn) (=1, K),
where dj; denotes the kth possible demand in region i (i =
1,---,m). While it is difficult to predict accurately the demand
vector for the next time interval, it is common in robust traffic
engineering to assume that the demand vector for the next time
interval is covered by the convex hull of all the historical de-
mand vectors Dy, [30]. Under this assumption, we can minimize
the worst-case cost while satisfying all possible demands that
may arise in the next time interval. We formulate this dynamic
global allocation problem by modifying the LP formulation in
Fig. 2. In particular, we change [C1] and [C2] to the following:

Z T+ cpi > dig
Fli)=i

[C2-dynamic] Z (%) =z

%

[C1-dynamic] Yk and i

vk
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to ensure that we have enough cellular and Wi-Fi resources to
satisfy all possible demand vectors. This is much more efficient
than provisioning for the peak demand in each region.

From now on, we will refer to our dynamic global allocation
algorithm as iDEAL, and the static global allocation algorithm
as iDEAL (static).

Property: A nice property of this dynamic global allocation
is that it effectively leverages the global cellular resource on de-
mand to satisfy different possible traffic demands. In particular,
while the total cellular resource is fixed, the amount of cellular
resource used in each region can change according to the real
demand. When demand shifts from one region to another over
time, the same global cellular resource can be used instead of
provisioning for the peak demand in each region. Therefore,
global cellular resource has a distinctive advantage over local
Wi-Fi resources in satisfying time-varying demand, which we
explicitly leverage in our formulation.

D. iDEAL Pricing Solution

As discussed in Section II, we want the pricing scheme to be
truthful and efficient. Meanwhile, we want the pricing scheme
to fully benefit from the interregion competition. For example,
when hotspots in one region lower their bids and offload more
traffic, this would reduce the demand for third-party resources
in other regions and cause hotspots in other regions to sell less.
To capture this unique interaction between intraregion and inter-
region competition, we cannot treat auctions in different regions
as separate auctions and compute pricing separately; instead, we
must consider them as a single auction and explicitly incorpo-
rate interregion competition into the payment computation.

The Vickrey—Clarke—Groves [35] auction is well known. It is
both truthful and efficient. It pays a winner the opportunity cost
that the presence of the winner introduces on the other players.
VCG has a major weakness—its cost is generally high [7]. How-
ever, in our setting, VCG is able to capture the interregion com-
petition, which lowers the cost. Thus, to preserve the nice prop-
erties of VCG (i.e., truthfulness and efficiency) while achieving
low cost, we apply the VCG principle globally over the whole
cellular sector and compute the global opportunity cost to cap-
ture both interregion and intraregion competition.

Algorithm: We follow the general VCG principle and com-
pute the global opportunity cost as follows. Let V(D,N)
denote the wvaluation consumed in the optimal alloca-
tion. D is a demand matrix containing K demand vectors
D, = {dg1,dka, -, dgm} (K = 1,---, K), which specify
possible demands in each region. N is the set of bidders
(including the cellular service provider). Given the result of
the allocation scheme, if we buy ¢ capacity from winner b
in region 7, the amount of money we pay to b will be
V(D,N \ {b}) — V(D' N \ {b}), where D' is derived
from D by setting dy,, = max(0,dy,. — t) for each k and
N\ {b} is the set of remaining bidders after removing bidder b.
Thus, V(D!, N '\ {b}) is the total value sold by other bidders
under the current optimal allocation; V(D, N \ {b}) is the total
valuation optimized after removing b. The difference is the
global opportunity cost & imposed on other bidders.

Next, we use an example to show how global opportunity cost
is computed and how the interregion competition can help re-
duce cost. Fig. 3 shows two regions 1?1 and 1?2, each with 1 unit
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Fig. 3. Global opportunity cost example. (a) Optimal allocation. (b) Optimal
allocation after removing the winning hotspot.

demand. 21 has two hotspots with valuations 1 and 3, respec-
tively. R2 has one hotspot with valuation 2. Each hotspot has 1
unit resource. The cellular resource is 1 unit and is worth 1.5.
The optimal allocation is shown in Fig. 3(a): 1 unit of Wi-Fi
in region 1 with valuation 1 and 1 unit of cellular resource
in region 2. To compute the global opportunity cost for the
Wi-Fi winner b, we remove b and compute the optimal alloca-
tion without the winner as shown in Fig. 3(b). The new allo-
cation should use all the cellular resource in region 1 and the
Wi-Fi resource with valuation 2 in region 2. The total valuation
sold by other bidders is thus 1.5 + 2 = 3.5, while in the orig-
inal allocation the number is 1.5. Thus, the global opportunity
cost we pay to b is 3.5 — 1.5 = 2. In comparison, with the same
allocation, if we apply VCG in each region separately, the local
opportunity cost is 3 since region 1 has only the Wi-Fi resource
with valuation of 3 after we remove b. This shows that global
opportunity cost is lower since it effectively takes into account
resources across all regions. Note that this notion of global op-
portunity cost and its computation work for both static and dy-
namic global allocations. The two versions only differ in the
allocation as described in Sections III-B and III-C.

Properties: iDEAL inherits the following three important
properties from VCG: 1) bidders have incentives to be truthful;
2) the outcome of the auction is efficient; and 3) the auction is in-
dividually rational, meaning third-party resource owners have
incentives to participate in the auction. Formally, we have the
following three theorems.

Theorem 1: In iDEAL, truth telling is an optimal strategy.

Proof: Pick arbitrary bidder b; in region 71, and let its val-
uation for unit capacity (e.g. 1 b/s) be v1. Suppose when b; bids
truthfully, it sells ¢; amount of capacity. Its utility is

Ul=(V(D,N\{b1}) -V (D" N\ {b:1})) —v1-ta

i.e., the difference between the payment it receives and its val-
uation for the amount it sells, where D1 is derived from D by
setting dg,, = max(0, dg,, — 1) for each snapshot k.

If by bids untruthfully and sells 2 amount of capacity, its
utility is: U2 = (V(D, N\ {b:}) — V(D?* N\ {b1})) —v1 - to,
where D? is derived from D by setting d,, = max(0, dg,., —
t9) for each k.

In order to prove truth telling is an optimal strategy, we need
U1l > U2. 1t is evident that

Ul—U2=[vy -ty +V (D* N\ {b1})]
— [’Ul -t +V (DI,N\ {bl})] .
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Here, the first term is the minimum total valuation needed when
we buy ¢, from b1, and the second term is the total valuation
used in the optimal allocation. Since the second term is optimal,
the first term cannot be smaller, and thus U1 > U2. [ |

Theorem 2: iDEAL is efficient, which means when bidders
are rational, the winners are the bidders whose valuation for
their resources is the least.

Theorem 3: iDEAL is individually rational, i.e., bidders of
the auction will get nonnegative utility, assuming a bidder does
not bid lower than his valuation.

Theorem 1 indicates that it is beneficial for a bidder to bid
truthfully regardless of other bidders’ strategies. Theorem 2 fol-
lows from the truthfulness property and our allocation, which
minimizes the total valuation assuming everyone bids truthfully.
Theorem 3 guarantees that winners will be paid no less than their
valuation.

While Theorem 3 is easy to see in normal settings, it is less
straightforward with our dynamic allocation because, in the dy-
namic allocation, the total amount of resource we buy is not
fixed. Specifically, when computing the opportunity cost, we
remove a winner and compute a new allocation and use the
bid(s) of the newly admitted winner(s) as the payment. While
the unit prices of the newly admitted bids are not lower than
the winner’s, the total amount of capacity we buy in the new al-
location might reduce. This is because the new allocation may
buy more cellular resource, which can be used everywhere and
may reduce the need for Wi-Fi in all regions. That makes it hard
to tell if the opportunity cost is higher than the winner’s valu-
ation. We prove the theorem using contradiction: If we remove
a winner w and the amount of increased valuation we buy from
others (i.e., the opportunity cost) is less than what w sells, then
w should not have won.

E. Understand and Guard Against Collusion

In this section, we first identify potential collusion strategies
in iDEAL and show how they differ from those in normal VCG
settings. We then discuss how to mitigate such strategies. We
call a set of hotspots colluding together a bidding ring. A bid-
ding ring colludes by adopting a certain bidding strategy to max-
imize utility, i.e., the difference between the payment and the
true valuation of the resource sold.

1) Collusion Strategies: Due to the distributed nature of
hotspot locations, collusion in our context is quite different
from collusion in normal settings, where the optimal collusion
strategy is to let one proxy bidder buy (or sell in an reverse
auction) for the whole bidding ring [8]. However, in our system
each hotspot submits a separate bid. This forbids hotspots
to collude optimally and thus may resort to other collusion
strategies identified below. In particular, we consider two types
of collusion: 1) single seller collusion, whose objective is to
maximize the total utility of all hotspots owned by this seller,
and 2) multiseller collusion, where each seller colludes with
other sellers, but tries to solely maximize its own utility.

In both types of collusion, a bidding ring can drive up the
price and increase its utility by supply reduction (i.e., drop
losing bids or reduce the capacity offered in winning bids,
which is equivalent to bidding an extremely high price for the
capacity that is removed from bidding). Supply reduction can
drive up price because it increases the opportunity cost, which
is determined by the immediate losing bids.
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2) Mitigating Collusion: We mitigate collusion as follows.

Bidding as a Group to Address Single-Seller Collusion: A
single seller with multiple hotspots has an incentive to reduce
supply because its hotspots submit separate bids. The opportu-
nity cost of one hotspot can be affected by the price/availability
of its other hotspots. Thus by strategically dropping some of its
hotspots or raising their prices, it can increase its revenue. This
strategy is especially harmful as it may also increase the op-
portunity cost of other sellers’ hotspots. Ultimately, it incurs a
higher cost to the service provider.

To address the issue, we let the hotspots owned by the same
entity bid as a group, i.e., the seller who owns multiple hotspots
discloses all its hotspots, and we consider them as a single bidder
in the auction. The seller has an incentive to choose this option,
since bidding truthfully is an optimal strategy (Theorem 1). It is
also preferred from the service provider’s perspective because it
only removes competition within the group. The hotspots in this
group still compete with hotspots of other sellers, which helps
to bring down the cost.

Dynamic Demands in Multiseller Collusion: In order to ben-
efit from supply reduction, a bidding ring needs to accurately
predict which bids may lose and drop them. Without that, supply
reduction can cause harm by letting the bidding ring miss oppor-
tunities to win. Making such predictions is challenging due to
the dynamic nature of the traffic demand and Wi-Fi availability.
Therefore, in practice, supply reduction does not necessarily in-
crease the utility of the hotspots, which can discourage them
from colluding.

Stability of Multiseller Collusion: When multiple parties are
involved in collusion, a natural question is whether the collusion
is stable (i.e., all members of the bidding ring have incentives
to stay in the ring [8], [11]). Reference [8] shows that in normal
settings, collusion in VCG is stable under certain assumptions.
However, their conclusion does not apply to our context because
of the difference in collusion strategies. Specifically, we make
the following two observations.

First, without utility sharing, members of a bidding ring have
an incentive to leave the ring (i.e., do not conduct supply reduc-
tion). Formally, we have the following lemma.

Lemma 1: Without utility sharing, for bidding ring members,
no supply reduction is a (weakly) dominant strategy (i.e., no
worse than supply reduction).

This follows from the truthfulness of VCG and the fact that
different sellers submit separate, sealed bids and cannot pose as
one entity in our system.

Second, the condition of “no utility sharing” is likely to hold
in practice due to difficulties of estimating utility obtained from
collusion in our system. One reason is that traffic demands and
Wi-Fi availabilities are highly dynamic, which makes it hard
to attribute utility changes to collusion. Moreover, using sealed
bids makes it hard to validate the behavior of other members
in the bidding ring. We can make it even harder through system
design such as delayed payment (e.g., paying the hotspots every
week even though the auction is conducted hourly), which fur-
ther obfuscates the utility.

IV. PRACTICAL CONSIDERATIONS

Allowing General Bidding Curves: Section III assumes the
cellular cost /'(z) is convex, and hotspot owners can bid only
one price value p; for the entire capacity they offer and are
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willing to sell part of the capacity at a prorated amount. Now we
consider more general cost functions, including convex, con-
cave (capturing economy of scale), or a combination. For ex-
ample, a third-party hotspot owner may want the flexibility of
specifying an entire bidding curve characterizing the ask price
with respect to the amount of offloaded traffic. The formulation
shown in Fig. 2 remains the same, except that the optimization
is no longer a linear program or convex program due to the more
flexible p; and F(z).

When only F(z) is nonconvex and hotspot owners still
bid only one price value for the entire capacity they offer,
the problem is easy to solve. We approximate F(z) as a
piecewise linear function and solve the optimization problem
by enumerating all possible line segments that z belongs to
(because within each segment F'(z) is still a linear function).
Essentially, we solve a linear programming problem for each
possible line segment, and then pick the best result from all the
corresponding linear programs.

To support general Wi-Fi hotspot cost functions, we use dy-
namic programming. We introduce discrete step sizes s and s’
that quantify the smallest cellular and Wi-Fi capacity unit to
purchase, respectively. Small step sizes give better solution but
increase running time. We build a table 7', where each entry
T(k.z) gives the cost of satisfying the demands of the first
k regions: 1,2, ..., k using cellular capacity equal to z

T(k.z) =min {T(k -1,z —v) + F(z) = F(z —v)
+auctionCost(k,d, — v -ep)}

where auctionCost(k, z) is the minimum cost for satisfying
amount of demand using Wi-Fi in region k, dj is the demand
in region k, ¢y, is the spectral efficiency in region %, and both z
and v are multiples of step size s.

We compute auctionCost using Dynamic Programming as
follows:

Wi(i,y) = min {Wi(i — 1,y — u) + cost(i,u)}

Wi is the Wi-Fi cost table for region &. Here, ¢ = 1,2,... Ny,
where N}, is the number of bidders in region k. The amount of
capacity we seek to satisfy, ¢, varies from 0 to =, where x is
the total amount of capacity we want to satisfy with Wi-Fi in
region k. cost(i,u) is simply the cost of satisfying « amount
of demand using only bidder ¢ at his bid price. The expression
indicates the cost of using ¢ hotspots to satisfy ¥ demand in
region k is the minimum cost of using ¢ — 1 hotspots to sat-
isfy y — u demand plus the cost of using #th hotspot to serve
u demand. y and y are multiples of step size s’. We then have
auctionCost(k,x) = Wi(Ny, ).

Supporting Offloading to Femtocells and Dynamic Roaming:
In addition to third-party Wi-Fi hotspots, femtocells and other
cellular networks can also be used for offloading. Roaming to
other cellular networks considered here is different from tra-
ditional roaming. Traditional roaming is enabled only outside
the current cellular provider’s coverage area, whereas dynamic
roaming in our context can take place within the coverage area
to reduce congestion. In order to support offloading to different
types of technologies, we need to effectively handle partially
overlapping spatial coverage, as different resources have dif-
ferent coverage ranges. This requires changes to the allocation
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algorithm. We extend our approach to support these scenarios by
dividing overlapping regions into multiple nonoverlapping re-
gions and allowing one provider to belong to multiple regions.
The constraint [C1] in Fig. 2 is then replaced by the following
two new constraints:

Z T+ = d;

Jef(d)

Vi=1,2,...

,m

Zmﬁ:xi V{’].:132,...,77,
i

where x;; is the amount of capacity bought from seller j and
used in region ¢. This extension can not only support offloading
to different types of networks, but also allow a hotspot provider
to use its resources across different regions (e.g., hotspots be-
longing to a single restaurant chain spread across different re-
gions but sharing the same bottleneck capacity).

Incorporating Quality Score: The cellular service provider
may prefer some hotspots over others due to different quality
(e.g., to avoid hotspots that do not guarantee the amount of
capacity they offer). In this case, we can differentiate which
hotspots to use based on the quality score ¢; (0 < ¢; < 1)
of hotspot . The higher the score, the better the quality and
the easier the hotspot can win in future auctions. To achieve
that and ensure the auction is still truthful and individually ra-
tional, we change the objective function in the allocation phase
to > :(z;-p;/q;) + F(2), which essentially increases the bid of
hotspots with low-quality scores and makes it harder for them
to win. We also change the payment for winner 7 to ¢; times the
opportunity cost so that individual rationality is still preserved
because the opportunity cost is no less than =, - p,/g;. It is not
difficult to see that the auction is still truthful since the quality
scores are bid-independent.

Benefiting From Delay-Tolerant Demands: Some application
traffic (e.g., e-mails) is delay-tolerant. A natural way to take
advantage of such traffic is to delay them when it is too costly to
satisfy them immediately (e.g., when the current traffic load is
very heavy or when most traffic demands originate from outside
the Wi-Fi coverage areas and have to be satisfied by only the
cellular network).

Our framework is flexible enough to support this new opti-
mization task. Consider traffic demands in m snapshots, namely
D =1dy; doi,...,di;...}. Wecanoptionally delay a certain
demand in snapshot ¢ to snapshot j, where ¢ < j. The resulting
demand (called final demand) becomes I’ = {dy —61, da— 62+
61727 ey (]7 — 67 + Zj<i 6]',,,;, ey dk- + Zj<m 53'71,7,}, where 6,
denotes the total amount of traffic in snapshot ¢ delayed to future
snapshots and 6; ; denotes the amount of traffic in snapshot ¢ de-
layed to snapshot j. It is easy to see 6; = Zj>i d;,;. Our goal
is to satisfy D’ during every interval ¢ while minimizing the
total cost of satisfying the demands over all intervals plus the
penalty incurred in delaying traffic. This can be formulated as
an LP problem shown in Fig. 4. The objective reflects the cost
of satisfying the final traffic demand in all snapshots plus the
penalty associated with delaying traffic. [C1] enforces that the
final traffic demand is satisfied during every snapshot. [C2] cap-
tures total cellular spectrum usage in snapshot k. [C3] and [C4]
provide bounds on xy_; and ¢ ;. This extension changes the al-
location algorithm in iDEAL, but the same pricing algorithms
and proofs in Section III-D still apply.
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> Input : dii, €, Akj, Dk,j, F(2)
> Outpul : Xk,j, Cks Zk, 04,05,
minimize: } -, (32 pr,;Tk,; + F(2x)) + penalty 3y - (k — 5)05.k
subject to:
[C1] Z Tk,j + Ckyi = dii — Ok + Z&',k,i Vk,i
31 (G)=i i<k

[C2] >, crifei =2k VEk, 1
[C3] O0< @k, < Aiyj Yk, j
[C4] O < cky Vk,i

Fig. 4. Problem formulation to optimize allocation. The variables are defined
in Table I, except that now some variables have the additional subscript % to
denote their values in snapshot &.

Selecting Users to Offload: So far, we have considered how
much capacity to buy from each Wi-Fi hotspot. Now we study
which users should be offloaded to a particular Wi-Fi hotspot.
We prefer a scheme that minimizes the switching time (e.g.,
avoid offloading users who will soon leave the hotspot or have
little traffic to send) while fully utilizing the purchased capacity
at the hotspot. We analyze the Wi-Fi traces from the large cel-
lular provider in the US, which also provides Wi-Fi services,
and find that a user who has stayed at a hotspot for a longer time
in the past is more likely to stay longer in the future. There-
fore, we propose a simple heuristic, which is to offload a user to
the hotspot if: 1) the user has already stayed there for at least a
threshold amount of time (e.g., 5 s); and 2) his estimated traffic
demand is lower than the residual purchased capacity at the
hotspot. The condition 2) tries to avoid switching the user back
and forth between the Wi-Fi hotspot and the cellular network.
Thus, users who are likely to soon leave the hotspot do not have
to incur the Wi-Fi switching overhead.

Supporting Unsplittable Demand: A single device usually
can only connect to one hotspot at a time. To capture such un-
splittable demand, we add the following constraint to the for-
mulation in Fig. 2: The demand of each device has an indicator
tr;, where t;; = 1 when demand by, is assigned to hotspot j,
and 0 otherwise. Therefore, for each demand by, Z,j tr; < 1.
For each hotspot j, >_, by X tx; < . To solve this integer pro-
gramming, we can first relax integer constraint on {; and solve
the relaxed LP. Then, we round #; to 0 or 1. Similar rounding
approach has been successfully used to find an approximate so-
lution to several integer programming problems (e.g., [33]).

V. EVALUATION METHODOLOGY

We evaluate our approach using trace-driven simulations. We
first describe the traces and how they are used.

Traces: We use the following traces: 1) Locations of cell
towers and femtocells from a large cellular provider in the US,
and hotspot locations from [36]. 2) Detailed network data with
periodic (every 2 s) reports of which sectors mobile devices
are using for their data communication. We use one-week data
from 2011 and pick the busiest sectors out of thousands of sec-
tors. We then use this data to estimate the number of users in a
sector during one hour, and the amount of time they stay in that
sector. 3) 3G HTTP traces report detailed HTTP session infor-
mation, such as HTTP duration, downloaded bytes, and type of
the download during all 24 h on a single day in 2011. This is
aggregated over several sectors and does not have information
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about which sector the user is currently in. 4) The backhaul ca-
pacity of about 150 hotspots from a large service provider in the
US. All of the network and trace data were anonymized, and no
individual user information or identity was available or used.
We only used the aggregate information for our evaluation.

Generating Regions: We pick a sector from Manhattan
downtown, where the cellular network in the area often gets
overloaded. We find 144 hotspots in this sector. We generate
regions by clustering the Wi-Fi hotspots using k-means [25].
We use six regions as it minimizes partition index [10], which
is a commonly used clustering metric. We run the clustering
algorithm 100 times and pick the clustering that minimizes
the average distance of Wi-Fi hotspots to the centers of their
assigned regions. In this case, the average distance is 32.9 m.
We assume a hotspot can only serve the demand of its own
region.

Network Configuration: Based on the typical cell tower
spacing of 400—500 m in busy urban areas [3], we use 250 m
as the communication range for a cell sector. The communi-
cation ranges for Wi-Fi and femtocell are set to 100 and 40
m [6], respectively. To calculate spectrum efficiency, we use
the distance between the centroid of the region and the cell
tower, and the distance between the centroid of the region
and the interfering cell towers, and compute path loss using
Hata model [19]. We consider six nearest base stations as
interfering base stations to calculate the SINR. We account
for self-interference and compute the resulting SINR' as:
SINR’ = SINR/(1 4+ « % SINR) where SINR' and SINR
denote the signal-to-interference-plus-noise ratios with and
without self interference, respectively, and « = 0.005 [5].
We get the spectrum efficiency by applying the Shannon’s
Law. Since the Shannon capacity is an overestimate of the
real capacity, we scale down the result to match the maximum
efficiency that is generally observed in a cellular network
(2 b/s/Hz).

Generating Traffic Demands: To generate the demand for
an hour, we determine the number of users from the detailed
network data during that hour and pick all the HTTP requests
of the corresponding number of users from the 3G HTTP
trace. The detailed network data and the HTTP trace are both
anonymized, and we only use the aggregated demand informa-
tion in our evaluation. We replace the data rate in the trace with
the desired demand rate according to the application types:
video 350 kb/s, audio 128 kb/s, application (e.g., download
binary files) 350 kb/s, text 150 kb/s, and image 165 kb/s. We
determine the rates of applications, text, and images according
to the 90th percentile rate that users receive from the 3G HTTP
trace and determine the video and audio rates using the data
from a large service provider. The data rates in the traces are
not used since they are limited by the current cellular capacity
and may not indicate the real demand.

We place users randomly inside the sector and assign them
to regions according to their locations. When a single demand
vector is used, we use the peak demand from each region as
the final traffic demand. When dynamic allocation is used, we
use all the demand vectors corresponding to the time when any
region has peak demand. In this way, both static and dynamic
allocation schemes can sustain the peak loads in all regions.
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Generating Bids: We use the distribution of backhaul data
rates and pick the available data rate uniformly distributed be-
tween 25%—75% of the backhaul data rate. The Wi-Fi bids are
then generated based on the pricing plan of a major service
provider. We uniformly choose 50%—150% of the price as a
hotspot’s valuation for a given backhaul capacity to capture
varying costs from different service providers. We then deter-
mine the hourly Wi-Fi valuations according to its capacity and
monthly bills assuming 30 days/month and 8 h/day. The real
bids depend on their bidding strategies and may differ from their
valuations. The cellular bid F'(z) is set to 0 (reflecting the sunk
costs) when z is below 80% of cellular capacity (which is set
to three carriers i.e., 3 times 3.84 MHz), and set to ¢ times es-
timated maximum Wi-Fi valuation when z exceeds 80%. Note
the Wi-Fi valuation is per bit per second, whereas the spectrum
cost is per hertz. Thus, we translate the maximum Wi-Fi val-
uation to price per hertz using the lowest spectrum efficiency
so that Wi-Fi is always preferred when the cellular network is
overloaded. We set ¢ to 1.25 by default and vary it to evaluate
its impact.

Performance Metrics: We compare different schemes using
valuation and cost. Valuation is the total valuation of all re-
sources consumed and reflects efficiency. Cost is the total price
of cellular and Wi-Fi resources the service provider pays. For
both metrics, lower values are preferred.

VI. EVALUATION RESULTS

A. Comparison of Truthful Auctions

We first compare the cost incurred under different auction
schemes, including iDEAL, iDEAL (static), per-region VCG
with global allocation, and per-region VCG with local alloca-
tion. All the auctions are truthful except per-region VCG with
global allocation, which is included to show how VCG will
perform without interregion competition. In addition, we also
compare to fixed pricing, where the service provider pays the
hotspots a fixed price and uses the global allocation to deter-
mine which hotspots to buy. A hotspot with higher valuation
than the fixed price would not sell in this case, so we use the
maximum Wi-Fi price we may generate as the fixed price. The
result of using average Wi-Fi price as the fixed price is similar
and omitted for brevity.

Fig. 5 shows the cost incurred under different schemes. We
first observe that auction-based approaches work much better
than the fixed pricing when there is enough competition. When
the number of hotspots is small, fixed pricing can perform
better than most auction-based approaches. However, iDEAL
achieves lower cost than the fixed pricing even when the
number of hotspots is 40. With 130 hotspots, iDEAL is almost
an order of magnitude better than the fixed pricing. Second,
iDEAL outperforms iDEAL (static), which outperforms both
versions of per region VCG. Per-region VCG fails to capture
the interregion competition and thus may suffer from limited
competition and lead to high cost. In comparison, both versions
of iDEAL fully benefit from interregion competition. iDEAL
further reduces cost by leveraging the flexibility of using
cellular resource in different regions on demand, thus reducing
the demands for third-party resources. Therefore, iDEAL and
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iDEAL (static) outperform per-region VCG by 63%-80% and
10%—61%, respectively.

We further compare the efficiency of the following alloca-
tions, all with truthful bids: 1) iDEAL, which can optimize
allocation according to multiple possible demands; 2) iDEAL
(static), which optimizes allocation according to a single traffic
demand; 3) local allocation, which statically allocates cellular
resources to different regions based on the traffic demands in
these regions. Note here we omit the fixed pricing because it is
not an auction and it makes allocation decisions solely based
on the fixed price instead of the valuation. Fig. 6 shows the
total true valuation of different allocation schemes as we scale
the traffic demands by a constant factor from 0.8 to 1.6 and
vary the total number of hotspots participating in the auction.
As before, iDEAL outperforms its static counterpart, iDEAL
(static), which further outperforms the local allocation. iDEAL
reduces the total valuation to only 8%—42% of local allocation
since it can effectively adapt the cellular allocation to different
regions based on real demand. Even iDEAL (static) performs
very well: Its total valuation consumed is only 34%-72% of
local allocation.

Fig. 7 further compares the cost of different auction schemes
as we vary the cellular cost F'(z) by changing its parameter ¢
from 1 to 2, where the cellular bid is set to ¢ times estimated
maximum Wi-Fi valuation when z exceeds 80%. The absolute
cost increases with ¢, as we would expect. The relative perfor-
mance across different schemes is similar for all values of ¢ we
use. The total cost reduces as competition increases (i.e., when
the number of hotspots goes up from 40 to 130).

B. Comparison to Nontruthful Auctions

In this section, we study the impact of individual hotspot
gaming in nontruthful auctions. We compare iDEAL to the
first price and regional uniform price, both of which are widely
used [15], [22]. The first price pays winners the amount of their

g 25 iDEAL 3 1.2 iDEAL
g iDEAL (static) s - £ 4 iDEAL (static) mmm—-
a 2 Local s & 2 Local @ ]
g g 08
c c
k<] k<]
® ®
S S
© ©
> >
[ [
2 2
0.8 1 12 14 16 0.8 1 12 14 16
Demand Scaling Factor Demand Scaling Factor
(© (d)

40. (b) Number of hotspots = 70. (c) Number of hotspots = 100. (d) Number

35
30
25

iDEAL

iDEAL (static)

Per region VCG

Per region VCG (Local)

iDEAL

iDEAL (static)

Per region VCG

Per region VCG (Local)

0.8

0.6

k7] @
8 20 8 M
s s
2 15 pd
2 2 04

10

0.2
5
0 | | 0 H K ‘ | |
1 126 15 175 2 1 1256 156 175 2
Ratio of 3G and highest Wi-Fi price Ratio of 3G and highest Wi-Fi price
(a) (b)
Fig. 7. Total cost comparison with varying cellular cost function.

(a) Number of hotspots = 40. (b) Number of hotspots = 130.

bids, and the regional uniform price pays all the winners in a
region at the first losing bid in the region. We do not compare to
generalized second-price auction (GSP) because, unlike GSP,
iDEAL does not differentiate between winning slots. If GSP
were used, everyone would game to be the highest paid winner
as in the first price. We use the static global allocation for all
schemes, except that iDEAL uses dynamic global allocation.
There are many possible gaming strategies. In our evaluation,
we consider simple gaming strategies as examples and show
that even these simple strategies can significantly degrade
performance. In the first price, we assume a bidder can observe
some fraction of bids from other bidders in his region. We
call this fraction Knowledge Factor (KF). He then uses that
information to guide his bid in the next round by bidding the
maximum among: 1) his valuation; 2) the average of the lowest
losing price he sees; and 3) the highest winning price he sees
(including his own bid in the last round). In the first round, bid-
ders start by bidding uniformly randomly between one time and
two times their valuation. In the uniform price auction, bidders
can game by supply reduction. Thus, we let the winners who do
not sell all their capacity reduce their capacity to slightly below
the amount they sell in the hope of admitting new winners and
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potentially increasing the price. When they do sell all their ca-
pacity, they will try to increase their offered capacity. In reality,
bidders can be more aggressive. For example, all bidders may
attempt to reduce supply (e.g., even when they sell all they
offer, they can potentially still gain by supply reduction), which
may harm the system even further. We conduct multiple runs
and show the results from one run since they are all similar.

Fig. 8(a) shows how gaming affects efficiency. We make a
few observations. First, both versions of iDEAL consume less
total valuation. The total valuation of iDEAL is as low as 8%
of the first price due to more effective use of cellular resources
in presence of multiple demands. The total valuation of iDEAL
(static) is only 45% of the first price. Second, both versions of
iDEAL are stable as bidders are truthful. In comparison, the total
value consumption fluctuates considerably in the first price auc-
tion because the bidders adapt their bids according to the others’
bids. The uniform price performs close to iDEAL (static) be-
cause the bidders in our simulation only reduce supply slightly
and they do not game by asking higher. In reality, the damage
can only be worse.

Fig. 8(b) further compares the total cost to the provider. Sim-
ilar to the case of total valuation, both iDEAL versions yield
significantly lower cost. Specifically, iDEAL reduces the cost
to 18% of the first price and regional uniform price. Moreover,
even iDEAL (static) reduces the total cost to 63% of first price
and regional uniform price. This result shows that with the help
of interregion competition, using VCG does not incur higher
cost than first price or regional uniform price.

C. Collusion

Collusion Under Dynamic Demands: We first study how
often a bidding ring can improve its utility by supply reduction.
We use two different sizes of the bidding rings: 20 and 50 out
of 144 hotspots. For each size, we run the experiment 10 times
with different random sets of hotspots. Each run consists of
50 rounds. In each round, the bidding ring drops all losing
hotspots from the previous round. If there is no losing hotspot,
it brings back the cheapest previously dropped hotspot. We vary
the demand during each round, but keep Wi-Fi bids constant.
We confirm the degree of traffic variation in the hourly traffic
traces in multiple cellular sectors from a major cellular provider
is comparable to the traces used for our evaluation. Fig. 9 plots
the cumulative distribution function (CDF) of percentage of
utility change of the bidding ring due to collusion. We find that
for the bidding ring of size 50, collusion reduces the hotspots’
utility for 13% of time and improves the utility for 28% of the
time. For the bidding ring of size 20, the numbers are 20%
and only 5%, respectively. When collusion reduces utility, it
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reduces by 79% on average, while the number for improvement
is only 30%. These results suggest dynamic demand signifi-
cantly reduces the incentive to collude. In reality, when Wi-Fi
bids are also dynamic, it is even harder to predict which set of
hotspots will lose.

Bidding as a Group: Next, we compare bidding as a group
with collusion using the same strategy mentioned above. Fig. 10
plots the average cost as we vary the total number of sellers and
the total number of hotspots they own and perform 100 random
runs for each configuration, where each configuration generates
10 sets of sellers and 10 sets of hotspots. The results are con-
sistent with our expectation: A single seller collusion does not
always improve utility, but it always incurs a higher cost to the
service provider, especially when each seller has a large number
of hotspots. In comparison, the group option, which is preferred
by sellers, reduces the total cost by as much as 36% and 96%
when the number of hotspots is 40 and 130, respectively. The
damage of collusion reduces as the number of sellers increases
since increasing the number of sellers means each seller con-
trols fewer hotspots.

D. Extensions

Allowing Bidding Curves: If only F'(z) is nonconvex, we can
approximate F'(z) using ¢ linear segments and optimize alloca-
tion by solving ¢ LPs, one corresponding to each line segment.
The running time increases by a factor of £. When the Wi-Fi bids
are nonconvex functions, we need to use the dynamic program-
ming (DP) formulation in Section IV to optimize allocation.

To quantify the computation cost and quality of DP solutions,
we compare them to those of the LP when the Wi-Fi bids are
convex (since LP can only handle convex functions). iDEAL
static allocation is used in all cases. We performed the com-
putation on a 7-core Intel Xeon 2.83 GHz CPU, with 32 GB
RAM. Each result is an average of five runs. Fig. 11(a) shows
that DP increases cost by 19.9%-45.1% compared to the LP due
to discretization. As one would expect, smaller step sizes in the
DP (defined in Section IV) yield closer results to the LP. This
is achieved at the cost of increasing running time. As shown in
Fig. 11(b), step sizes of 50 kHz for cellular spectrum and 40 kB/s
for Wi-Fi capacity achieve close-to-optimal solution and take
around 1 min for 130 bidders, which is affordable in practice.

Supporting Femtocell Offload: In Fig. 12(a), we let both
Wi-Fi hotspots and femtocells participate in the auction. We
vary the number of Wi-Fi bidders while keeping 16 femtocells.
As expected, the benefit of femtocells is larger when we have
fewer Wi-Fi hotspots. For example, the femtocells reduce the
cost by 32% when there are only 40 hotspots. As the number
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Fig. 12. Benefit of femtocell offloading and roaming. (a) Femtocell offloading.
(b) Roaming.

of hotspots increases, the additional benefit from femtocells
becomes marginal since Wi-Fi has a higher communication
range and is more effective in offloading.

Supporting Dynamic Roaming: Fig. 12(b) shows the total
cost as the roaming capacity available varies from 0 to 4 Mb/s,
where 0 corresponds to no roaming. The evaluation has
40 hotspots. In this case, since the Wi-Fi resource is insuf-
ficient, even having 1 Mb/s of available roaming capacity
(around 10% total cellular traffic in the sector) can significantly
cut down cost. Dynamic roaming reduces the cost to 17%
of that when only Wi-Fi is used with the low roaming price
(which is set to the maximum winning Wi-Fi bid we observe
in the default settings), and 25% under the high roaming price
(which is the maximum Wi-Fi bid we may generate based on
the distribution we use). Further increasing roaming capacity
leads to an even lower cost, but the improvement tapers off as
the capacity increases beyond 2 Mb/s.

Delaying Delay-Tolerant Demands: We use two scenarios
to demonstrate the benefit of delaying some traffic demands.
Fig. 13(a) shows the total cost to serve both rounds under the
first scenario, where we pick the highest demand of all the hours
as the demand in the first round and use the average demand in
an hour in the second round. We vary the penalty factor from 0

70. (c) Number of hotspots = 100.
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Fig. 13. Benefit of delay-tolerant demand. (a) Scenario 1. (b) Scenario 2.
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Fig. 14. Strategically selecting users to offload reduces the switching cost.

to infinity, where infinity means no demand will be delayed. We
find delaying some demands to the second round is beneficial
in all cases when penalty is smaller than infinity. The benefit is
largest when the resource we have is not sufficient for the first
round but sufficient for the second round. As the figure shows,
the savings are 63.6% and 72.6% for 70 and 100 hotspots, re-
spectively, when penalty factor is 10. The corresponding num-
bers are 51.4% and 61.2% when the penalty factor is 20.

In Fig. 13(b), we consider the scenario where in the first round
many users are not in Wi-Fi coverage, and we vary the fraction
of such users. In this evaluation, we only use hotspots from three
regions and leave the other three regions not covered by Wi-Fi.
In the second round, the users are placed uniformly across the
sector. The results show that delaying some demands in this
case yields significant saving. When 100% of the users are not
in Wi-Fi coverage in the first round, the saving can be up to
24% under penalty factor 10, and 14.8% under penalty factor 20.
When 40% of the users are outside Wi-Fi coverage, the numbers
become 20.2% and 12.2%, respectively.

Selecting Users to Offload: We use 1 h of the HTTP trace
in one region and determine the total Wi-Fi capacity to buy
using iDEAL. We vary the Wi-Fi switching time from 0.5 to 4 s.
Fig. 14 plots the ratio of total switching time and total offloaded
time as we vary the threshold duration we use to offload a user
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to Wi-Fi (e.g., the user has to stay at the Wi-Fi hotspot for a pe-
riod that is over the threshold time). In all cases, we ensure the
Wi-Fi capacity that was purchased is fully utilized since most of
the traffic come from the users who stayed at Wi-Fi much longer
than the threshold time. As we can see, picking users who stay
at Wi-Fi hotspot longer reduces the fraction of time spent in
switching from 25.1% to 15.9% when using 4 s switching time
and 5 s duration threshold.

VII. IMPLEMENTATION

We describe how to offload in state-of-the-art commercial
systems, and then present our implementation.

Offloading involves the following three issues: 1) identifying
a network to offload; 2) automatic authentication; and 3) seam-
less offload so that the existing sessions are maintained during
the offload. iDEAL already solves the first issue. Here, we de-
scribe the other two issues.

Automatic Authentication: 3GPP Release 7 uses the Ex-
tensible Authentication Protocol (EAP) for key distribution
to WLANSs that are owned by the cellular service provider.
Hotspot 2.0 is developed to support authentication with exter-
nally owned hotspots. Specifically, Hotspot 2.0 uses 802.11u to
support the Access Network Query Protocol (ANQP), which is
a query-response protocol used by a mobile device to discover
information including hotspot owner’s domain name, roaming
partners accessible via the hotspot, and EAP method used for
authentication and IP address type availability [2], [4]. To
support dynamic offloading in this paper, the roaming partners
are updated dynamically according to the offloading decision
of our algorithm.

Seamless Mobility: There are several strategies to perform
data offloading. The simplest strategy is to use an applica-
tion-based switch, which simply moves a connection between
cellular and Wi-Fi networks but does not worry about pre-
serving the sessions across the switchover. It can cause a
disruption to most applications and result in negative user
experience, especially for VoIP, VPN applications, and video
streaming applications [1].

3GPP Release 8 uses Dual Stack Mobile IP (DSMIP) to en-
able seamless handover between 3G and Wi-Fi. The solution
does not require any support from Wi-Fi hotspots. The cellular
radio access network supports a Home Agent (HA) that binds
the new IP address of the node to the permanent IP. Since the
IP address is preserved in this case, it provides a better user ex-
perience compared to application-based switching [1]. More-
over, 3GPP Release 10 uses DSMIPv6, which allows mapping
multiple IP addresses to a single permanent IP address and sup-
porting simultaneous use of Wi-Fi and 3G according to appli-
cation QoS requirements (e.g., keeping VoIP application on 3G
and using Wi-Fi for bandwidth-intensive applications like video
streaming). Reference [23] uses an implementation to quantify
the efficiency of DSMIPv6 for managing handoffs between net-
works. It reports a 0.02-s interruption and three lost packets
when switching between IPv6 to IPv6 connection using two
interfaces and 0.09 s interruption, and 17 lost packets while
switching between IPv4 to IPv6 network. Further optimizations
are possible to reduce the switching delay and packet losses. For
example, [32] shows packet loss can be reduced to near zero
with buffering on the mobile nodes.
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Our Implementation: We develop a prototype implemen-
tation on Linux machines using a NetGear WAGS511 NIC
to demonstrate the feasibility of our solution. Fig. 15 shows
our system architecture. Through a simple web interface,
hotspot owners can submit their bids to the service provider
machine, who controls the auction. Hotspots are configured
using hostap [20]. Depending on who wins in the round, the
service provider sends a message to the hotspot with the ssid
and password it should use in the current round and also sends
the ssid and password to the mobile client machine so that it
can connect to the winning hotspot. This message is sent using
TCP sockets. Authentication between mobile client and hotspot
is done using WPA PSK through WPA Supplicant [37].

We collected performance statistics from the mobile client
for billing and keeping track of hotspot quality score. We mea-
sured the upload and download statistics on the wireless inter-
face using the Collectl tool [14] periodically (e.g., every 10 s)
and send back the data to service provider PC for bookkeeping.
iDEAL allocation and pricing take 43 and 74 ms, respectively,
which are both small.

We further measure the association and authentication time
in our implementation. After getting the scan results, it takes
18 ms to associate, 103 ms to perform four-way handshake (i.e.,
defining individual keys for unicast transmission), and 3 ms to
perform the group handshake (i.e., defining keys for broadcast
transmission). The authentication times can be further reduced
(e.g., using techniques in [21] and [26]). Moreover, scan times
can be shortened by selective scanning on fewer channels as
proposed in [27]. Therefore, we can achieve a very low over-
head for handoff, making offloading feasible.

VIII. RELATED WORK

The need to complement cellular networks with other forms
of connectivity has been considered in the past. The authors
in [9] conduct measurements in a vehicular testbed and report
that Wi-Fi is available only 11% of the time and 3G is available
87% of the time. Moreover, they find that 3G and Wi-Fi avail-
ability are negatively correlated, e.g., Wi-Fi is available 50% of
the times that 3G is not available. Lee et al. in [24] use daily
mobility patterns of 100 iPhone users to measure the amount of
data Wi-Fi can offload. They find that Wi-Fi can offload 65% of
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data traffic without any delay; if 1-h or longer delay can be tol-
erated, the offload traffic increases further by 29%. Zhuo et al.,
in [39], leverage VCG-based auction mechanism to incentivize
mobile users to wait until they come in contact with a Wi-Fi AP.
Authors in [16] quantify citywide Wi-Fi offloading gain. They
show that even a sparse Wi-Fi network improves performance.
Different from the above existing works, our paper focuses on
how to incentivize third-party resource owners to offload cel-
lular traffic. The work in [12] is closest to ours. It proposes
a VCG reverse auction framework to buy femtocell resources.
Their scheme is similar to the local allocation in spirit in that it
statically determines the amount of third-party resource to buy
in each region. As mentioned in Section I, it does not address
the three unique challenges we focus on, namely, diverse spatial
coverage, traffic uncertainty, and collusion.

IX. CONCLUSION

How to sustain the explosive growth of cellular traffic without
requiring prohibitive investment is a major challenge for cel-
lular service providers. Our proposal, iDEAL, enables the cel-
lular service provider to purchase and leverage third-party re-
sources on demand through reverse auctions. iDEAL promises a
win—win solution: The cellular service provider achieves signif-
icant savings by not having to provision for the peak traffic de-
mands; third-party resource owners (e.g., Wi-Fi hotspots, Fem-
tocells, or other cellular service providers) gain extra revenue
from the otherwise wasted spare capacity; and the consumers’
quality of experience is protected.

We showed that several of iDEAL’s key features are critical
to the superior performance of the reverse auction. iDEAL ex-
plicitly accounts for the diverse spatial coverage of different re-
sources and copes with the dynamic nature of traffic demands.
We showed that iDEAL effectively incentivizes third-party re-
source owners to be truthful to their true valuation in the bidding
process and is provably efficient by choosing the bidders with
the lowest valuation as the winners.

We evaluated iDEAL using simulations based on detailed
traces from a large cellular service provider. Compared to the
local allocation, iDEAL allocation yields up to 92% improve-
ment. Compared to a variety of different auction schemes,
iDEAL leads to up to 92% improvement. We also showed that
iDEAL effectively mitigates collusion.

As future work, we plan to conduct trials of iDEAL in
selected regions in one of the largest US cellular networks.
Another interesting topic for future work is to support WiFi
providers to sell to multiple cellular providers. In this case, we
need to simultaneously capture competition among buyers as
well as competition among sellers. Double auction is a potential
solution, which we will explore.
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