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Abstract—This paper characterizes the outcomes of secondary
spectrum markets when multiple providers compete for secondary
demand. We study a competition model in which each provider
aims to enhance its revenue by opportunistically serving a price-
dependent secondary demand, while also serving dedicated pri-
mary demand. We consider two methodologies for sharing spec-
trum between primary and secondary demand: In coordinated ac-
cess, spectrum providers have the option to decline a secondary ac-
cess request if that helps enhance their revenue. We explicitly char-
acterize a break-even price such that profitability of secondary ac-
cess provision is guaranteed if secondary access is priced above the
break-even price, regardless of the volume of secondary demand.
Consequently, we establish that competition among providers that
employ optimal coordinated access leads to a price war, as a result
of which the provider with the lowest break-even price captures
the entire market. This result holds for arbitrary secondary de-
mand functions. In uncoordinated access, primary and secondary
users share spectrum on equal basis, akin to ISM bands. Under this
policy, we characterize a market sharing price that determines a
provider's willingness to share the market. We show an instance
where the market sharing price is strictly greater than the break-
even price, indicating that market equilibrium in an uncoordinated
access setting can be fundamentally different as it opens up the pos-
sibility of providers sharing the market at higher prices.

Index Terms—Admission control, cognitive radio, game theory,
private commons, profitability, wireless networks.

I. INTRODUCTION

ECENT initiatives by government agencies extend
the reach of spectrum management policies that
license holders (e.g., network providers) are entitled to
pursue [3], [6], [9]-[11], [27]. In particular, the Federal Com-
munications Commission (FCC) introduced a new spectrum
access policy model known as Private Commons to support fast
time-scale spectrum transactions [1], [8]. Under this model,
ownership of spectrum remains with the license holder pro-
viding service to its primary users, but this provider may also
provide spectrum access to secondary users for a fee.
As pointed out in the FCC's report on secondary spectrum
markets, control of secondary access in private commons can
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be implemented in several different ways [1]. In one possible
implementation identified in [8], access to the spectrum by
secondary users may be coordinated by the provider, via signals
that determine when or how such access is allowed. A notable
coordinated policy is the so-called threshold (reservation)
policy, whereby secondary spectrum access is permitted as
long as the number of channels occupied in a given spectrum
band is below a certain threshold. Theoretical properties of the
threshold policy, including optimality in certain settings, have
been extensively studied in the literature (cf. [22], [29]-[31],
[34], and references therein). Access to a band may also pos-
sibly be uncoordinated, in which case primary and secondary
users share access to the band on an equal basis, in a way
similar to ISM bands [8].

Since cellular networks are generally overprovisioned to cope
with short-term spikes, it might be possible to increase spectrum
utilization through private commons. Studies indeed indicate
that the majority of base stations in heavily populated areas,
such as city centers, remain underloaded at all times, suggesting
that providing secondary services on licensed spectrum might
increase operating revenues [2], [28].

Realizing the potential of private commons entails a number
of challenges for a provider. One such challenge concerns
pricing of secondary spectrum access in the face of uncer-
tainty of demand response to the advertised price: Providing
secondary access at a price returns an immediate revenue for
the provider, but it also incurs an opportunity cost due to lost
primary revenue as spectrum is fundamentally a finite resource.
The balance between these two effects determines profitability
of secondary spectrum provision, and it may possibly depend
not only on the secondary price but also on the secondary de-
mand. The relationship between secondary price and demand,
also known as the demand function, is difficult to characterize
explicitly, however, and may also be time-varying.

This issue is further aggravated in competitive situations in
which multiple network providers compete for the same pool of
secondary demand. In such situations, a provider may opt to beat
the price of competitors, thereby winning the entire secondary
market, or may opt to match competitors' price thereby serving
part of the market at a higher price. It is not readily clear which
alternative is favorable, especially under the alluded uncertainty
in the price—-demand relationship.

In this paper, we seek to analyze and underline the differences
between the outcomes of a price competition between multiple
providers implementing coordinated and uncoordinated access
policies in private commons, as illustrated in Fig. 1(a). We
consider a game-theoretic setting and identify equilibrium
outcomes in term of Nash equilibria. In revenue calculations,
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Fig. 1. Tllustration and an abstraction of the market model considered. (a) Illustration of provider competition over the secondary users in a private commons
setting. (b) Two providers each with a capacity C;,1 = 1, 2, compete for secondary demand o (p) while also serving their respective dedicated (primary) demand
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we adopt a model that explicitly captures the random nature of
spectrum access requests of both primary and secondary users.

Our first contribution is to characterize and then prove the ex-
istence of a break-even price for each provider under an optimal
coordinated access policy. This break-even price is the lower
limit to the price values for which a provider's profitability is
guaranteed. The paper explicitly characterizes the break-even
price, which is independent of the parameters of other providers
and possesses the fundamental property of being insensitive to
the demand function of secondary users. The analysis further
reveals that the break-even price directly relates to the fraction
of lost primary users (in the absence of secondary users), which
can be expressed using the well-studied Erlang-B function. The
break-even price thus inherits all the mathematical properties of
this function.

Our next contribution is to show that market sharing between
providers cannot be an equilibrium outcome under optimal co-
ordinated access. We prove this claim by deriving the best re-
sponse of each provider, where we show that a provider always
opts to underbid its competitors, leading to a price war. The
proof hinges on structural properties of the revenue function that
hold irrespective of the specific relation between the price and
the secondary demand. We formally establish the strictly domi-
nating strategy of each provider and list all the possible market
outcomes (i.e., Nash equilibria), which this price war can lead
to. We demonstrate that the provider with the lowest break-even
price wins the market. Depending on the elasticity of the sec-
ondary demand, the winner's equilibrium price may be signifi-
cantly lower than the break-even prices of the competitors'. In
contrast to the break-even price, this equilibrium price cannot
be identified without explicit knowledge of the secondary de-
mand function. We note that if multiple providers share the same
break-even price, they are coerced into an equilibrium in which
no provider makes a profit.

As our last contribution, we show that market equilibria
under uncoordinated secondary access may be drastically
different than those under coordinated access. We introduce
another price threshold, the market sharing price p™M®, that
determines a provider's incentive to share the market. We prove
that the break-even price is lower than the market sharing price
under uncoordinated access and inelastic demand, thereby es-
tablishing the existence of a price interval on which a provider
is both profitable and willing to share the market.

The rest of the paper is organized as follows. In Section II,
we survey previous work. In Section I1I, we present the network
model used to conduct our analysis. In Section IV, we analyze
profitability conditions and establish market dynamics and com-
petition outcomes under an optimal coordinated access policy.
We compare and contrast these results to the uncoordinated ac-
cess case and provide an analysis in Section V. We conclude the
paper in Section VI.

II. RELATED WORK

In this section, we briefly survey related work on competition
and spectrum pricing for secondary markets and highlight the
differing contributions of our paper.

Network providers in spectrum markets may face competi-
tion at two different levels. The first level consists of compe-
tition between secondary network providers to lease spectrum
from a primary provider (or the government) that holds a spec-
trum license. The second level of competition is between net-
work providers holding a spectrum license or lease and com-
peting to offer their services to end-users.

Many papers in the literature consider the first level of
competition, while our paper addresses the second one. For
instance, in the works by Jagannathan et al. [15], Kasbekar
and Sarkar [19], Duan et al. [12], Ren et al. [35], Niyato and
Hossain [32], Sengupta and Chatterjee [36], and Xing et al. [39],
game-theoretic approaches to spectrum auctioning and leasing
are analyzed. The setup of all these papers (i.e., competition
between providers to lease spectrum) is different from ours
(i.e., competition between providers to lure users).

Several papers study the problem of ensuring profitability
in secondary spectrum markets. Niyato and Hossain [32] de-
rive market equilibria pricing by taking into consideration the
demand and supply dynamics of spectrum auctions. However,
the model uses a very specific secondary demand based on the
utility from owning the spectrum and how much it costs to lease
the spectrum. Moreover, secondary users have the option to
lease parts of their spectrum from different spectrum owners.
On the end-user side, Alanyali ef al. [4], [5] establish a pricing
policy that guarantees profitability for the network provider as
long as a demand is generated. However, these papers assume
a monopolistic framework, while ours considers a competitive
oligopoly. Furthermore, [4] and [5] consider a multicell setting
with a single frequency band in each cell, while our paper fo-
cuses on an isolated cell offering multiple frequency bands.
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Mutlu et al. [30] also consider a monopolistic framework and
derive an optimal coordinated access policy under which rev-
enue from secondary users is maximized. The results of that
paper show that a threshold policy is optimal for coordinated
access in an isolated cell, assuming that a provider advertises a
fixed price (i.e., the price does not depend on the instantaneous
channel occupancy).

In Ileri et al.'s work [14], a comprehensive model including
both the auction and the end-user sides of the competition is
studied. Different from our paper, this model focuses on the
auctioning side of the competition where the revenue generated
by secondary users is used to compensate for the costs of auc-
tioning. In our model, we assume that providers own spectrum
or have already leased it for a certain amount of time and need
only to consider the revenue brought in by the primary and sec-
ondary users.

The works by Maille and Tuffin [25] and Maille et al. [26]
use a model where both the auction side and the service side
of the competition are considered. The work in [25] specifically
focuses on the competition between two different but substi-
tute technologies, while [26] models a three-level competition,
where spectrum owners, lessees, and users each make their own
separate decisions. These decisions include the use of different
technologies. In our model, we assume that providers offer the
same type of services and therefore cannot influence the sec-
ondary users' preferences beside the price advertised. A related
work by Ren et al. [35] studies and compares the market out-
come achieved by respectively enforcing cooperation or compe-
tition among providers. While such external interventions might
be useful in analyzing hypothetical outcomes, our model re-
frains from such enforcements as it aims to characterize a nat-
ural competition. In a work by Kim ef al. [21], competition be-
tween two providers is analyzed where network preemption al-
lows for primary users to evict secondary users from the system.
Unlike our paper, the network model is not a finite capacity mul-
tichannel network, but rather a spatial distribution of channels
that turn on and off, and the analysis relies on an approximation.

None of the previous work surveyed here considers compe-
tition among network providers implementing optimal coordi-
nated access and facing secondary demand governed by a gen-
eral demand function. The characterization of the market equi-
librium and demonstration of a price war won by the provider(s)
with the lowest break-even price as well as the possibility of
market sharing equilibria under uncoordinated access policies
are unique contributions of our paper.

III. NETWORK AND MARKET MODELS

In this section, we introduce the network and market models
considered and the accompanying notation. For convenience of
exposition, we present here a model with two providers, and
later extend it to an arbitrary number of competing providers:
Each provider ¢ = 1, 2 has a finite number of channels C;, and
a dedicated primary-user base whose traffic generation rate (i.e.,
the average number of requests per unit time) is represented with
A; > 0. For each primary user serviced, provider ¢ collects a
reward of K; units.

The providers compete for an additional secondary demand,
which is raised through offering secondary service at a fixed
access price for the duration of a contract period. The contract
period is long enough (relative to interarrival and holding times
of calls) to allow an equilibrium analysis. In the course of the

contract period, neither the pricing nor the users' preferences
change.

If provider i charges p; units per secondary access, then the
intensity of secondary demand is o (p;). Here, o ( - ) is the well-
known demand function, and it is assumed to be continuous and
nonincreasing. We denote the maximum value of the secondary
demand by oyax = a(0).

We shall assume that each demand type (primary and sec-
ondary) consists of a random sequence of request arrivals that
occur according to independent Poisson processes. We also as-
sume that, if granted, each request holds a single channel for
a random duration that is generally distributed with unit mean,
independently of other requests and arrival times. We shall as-
sume that the channel holding statistics are identical for primary
and secondary requests. Such an assumption is valid when both
types of traffic are generated by similar applications.

The general form of aggregate secondary demand o(p)
captures the heterogeneity of customer preferences. Indeed, the
demand function implicitly represents the fraction of users (user
types) that find each price value acceptable. The generality
of the demand function allows consideration of different user
types. The separation between primary and secondary users and
the random nature of service times capture additional levels of
heterogeneity in our model.

Secondary demand is assumed to be attracted to the provider
charging the lowest price. This behavior can be explained by
price aversion, a concept employed in marketing manage-
ment [38]. When both providers charge the same price, the
resulting secondary demand splits between the two providers
according to a static probability vector [a1,@2] such that
a1+ az = 1 and oy, ay > 0. Namely, each provider ¢ receives
a secondary demand of volume w;o(p;) every time market
prices are equal.

Each provider 7 also has the choice of admitting or rejecting
secondary requests according to an access policy, which we de-
note by A;. We assume that actions taken by A; depend only on
the number of each class of users (primary and secondary) in the
system. Thus, A; belongs to the class of occupancy-based poli-
cies, the performance of which is insensitive to the call length
distribution except through the mean [31]. Hence, without loss
of generality, we can assume exponentially distributed service
times for the purpose of analysis in the rest of this paper.

Since providers have a finite number of channels to provide
service with, they cannot accommodate new requests if all of
the channels are occupied. This results in some requests being
blocked. We define B; ;(A;, 0, A;) as the blocking probability
for class j users (j = 1 for primary and 2 for secondary) when
secondary demand is o and the access policy is 4;.

The goal of each provider is to maximize the total revenue
collected. The revenue rate of provider ¢ when it services sec-
ondary demand of ¢ units is given by

Wi(pi, o, Ai) = (1 — B; 2( i, 0, Ai))op;

—+ (1 - B‘i,1(>\i7 a, AL))AZIX'Z (1)

Here, the first and the second terms are respectively the rev-
enue generated by primary and secondary requests that are ad-
mitted by the provider. Each term represents the expected long-
time rates per unit time.

Since the secondary demand a provider receives depends on
prices of both providers, so does the revenue of the provider.
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We define the reward R;(p;,p—;) of provider i as its revenue
when provider i and its competitor —i charge secondary access
p; and p_; units respectively. Namely

w; (p'i7 U(pi)v A'i)y ifp; < p_;
R;(pi,p_i) = Wilps,cuolpi), A;), ifpi =p_; )
Wi (p'i7 0’ A'i)7 lfpl > p_;.

Hence, the reward is affected by the amount of secondary de-
mand provider ¢ captures through the relationship between its
own price p; and the price of the other provider p_;. Once the
prices determine the secondary demand for each provider, the
rewards are further shaped by the providers' access policies.
Each provider has full information on its own network parame-
ters and can observe the prices advertised by its competitors.

IV. OPTIMAL COORDINATED ACCESS POLICY
A. Profitability

For a given secondary demand ¢ and secondary price p, let
A*(p, o) denote a coordinated access policy that maximizes the
revenue rate for a provider (for analyses in which we consider
a single provider, we will drop index ¢ from our notation for the
sake of simplicity). We refer to A*(p, o) as the optimal coor-
dinated access policy. We represent the resulting maximal rev-
enue W*(p, o) as follows:

W*(p,0) = W(p, 0, A™(p, 0)) = maxW(p, 0, 4). ()

One can formulate the provider's optimization problem using
a Markov decision process (MDP), where the state is the total
number of users in the network. Note that primary and sec-
ondary users have identical channel holding statistics, hence
once admitted to the network, they are indistinguishable. At
every state, the provider needs to make a decision whether to
admit or reject a secondary user arrival in order to maximize
its expected revenue. MDPs can be solved with dynamic pro-
gramming (DP) techniques [7]. Under the given assumptions, it
is well known that the coordinated access policy that yields the
optimal solution to our DP problem is a threshold (reservation)
policy: Secondary users are admitted by a provider when the
channel occupancy of the provider is below a threshold T" > 0,
and they are blocked otherwise [22], [29], [31], [34]. The op-
timal threshold value depends on all parameters of the provider
including intensity of the secondary demand. We let the notation
A = T correspond to the implementation of a threshold policy
with the specific threshold value being equal to 1.

In the competitive setting considered in this paper, it will be
important to identify conditions under which an optimal policy
A*(p, ) ever accepts a secondary request. Under such condi-
tions, the secondary price—demand pair (p, o) yields profit rel-
ative to serving primary demand only; in turn, (p, &) represents
an economically viable situation for a provider. The issue is
closely related with the opportunity cost of accepting a sec-
ondary request: On the one hand, such a request brings an im-
mediate revenue of p; on the other hand, it may cause rejecting
future requests, possibly with higher immediate revenue, due to
the channel that it holds temporally. To identify the profitability
of admitting a secondary user, we utilize a policy improvement
technique based on [4] and [22]. Specifically, we identify a price
condition for which there exists a policy that yields a better rev-
enue than a policy that flatly rejects all secondary arrivals. This
determines the sign of the balance in the tradeoff when making
a control decision to admit a secondary user or not. We state
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our main result on this profitability condition in the following
theorem.

Theorem IV.1: For ¢ > 0, there exists a break-even price
pPE given by

pPE = KE(\,0)

- pNyZe]!
where E()\,C) = ST
that:

a) W*(p,0) > W*(p,0) if p > p°=.

b) W*(p,0) = W*(p,0) if p < p®".

Proof: In order to calculate for which prices it is profitable
to admit secondary users, we model the optimization problem as
an MDP. Thus, we set up an infinite horizon average-cost dy-
namic programming problem and identify the prices at which
the optimal policy allows for the admission of secondary users
into the network at some states. To do so, we take the total
number of users in the network (i.e., occupancy) denoted by ¥ as
the state of the system, J as the time-average reward, and h(y)
as the differential reward function [7]. J can be interpreted as
the average reward collected from incoming arrivals over a pe-
riod of time whose length goes to infinity, whereas the differen-
tial reward function h(y) characterizes the expected difference
when we start the process from a particular state y instead of
an arbitrary state y’, which we take as the reference such that
h(y") = 0. In our case, and without any loss of generality, we
sety’ = 0.

We uniformize the process with the maximum possible tran-
sition rate out of any state, which we denote by v 2 N+o
+ C'. Since the service rate is the same for both primary and
secondary users, they are indistinguishable once in the system.
Following this observation, at state {y : ¢ < y < C}, a user
(either primary or secondary) will leave the system with prob-
ability ¥. With probability %, a primary user will arrive; with
probability 7, a secondary user will arrive; and with probability
% , the state will remain the same (i.e., nothing happens). Note
that an arrival of either kind to a full network is not admitted, and
thus no reward is collected. Then, the well-established Bellman
equations for the average reward problem can be formulated as
follows:

4)

is the Erlang-B formula. such

T+ 7 () = {yh*(y — 1) + (C — p)h* (W)

v
+ MK + h*(y+ 1))
+omax(p+h*(y+1),h7 ()} ()

for 0 < y < C — 1. The last term on the right-hand side of

the equation reflects the admission choice to be made, that is
either admit an incoming secondary user and collect a reward of

p while incrementing the state or reject the arrival and preserve

the state.

We also consider the two special cases, first when the network
is full
T+ (C) = H{CR (C = 1) + (A + )h* (C)}

v
and next when the network is empty

T+ h*(0) = 11/{011*(0) +AK + h*(1))

+ o max(p + h*(1), h*(0))}.
Let us define the lock-out policy as an access policy where all
secondary users are rejected, regardless of network occupancy.
We will approach this pricing decision problem by determining
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Fig. 2. Behavior of break-even price as a function of network parameters. (a) Break-even price pPF with respect to network capacity C' for different primary
arrival rates A and primary price K = 1. (b) Break-even price p®® with respect to network load A /C for different network capacities ' and primary price K = 1.

when the lock-out policy on secondary users stops being op-
timal. Assuming a lock-out policy, which we denote by the use
of the superscript LO, (5) reduces to

J+h"Cy) = %{tho(y — 1)+ (C - y)h"°(y)

+ MK + ROy + 1)) + o™ ()}, (6)
From the last argument of (5), it is clear that when the state

of the network is y, a lock-out policy is optimal if and only if
max(p + h"O(y + 1), KO (y)) = KO (y) or

p<hO%y) —hCy+1). ™
Therefore, if p > AY©(y) — RO (y + 1), a lock-out policy is
no longer optimal, which is equivalent to starting to admit some
secondary users. We shall next obtain an analytical expression
of the quantity H(y) £ hlC(y) — RLO(y + 1).
Writing (6) for every state y and taking the difference be-
tween every two consecutive states yields the following set of
equations:

A+ 1)H(O) = AH(1)

M+ HE-1) = M) +(y—DHy—2)

(A\+CYH(C—-1) = MK+ (C-1)H({C-2)
The solution to this set of equations is
E(\C)

() ®
Since we are specifically interested in finding the price p at
which it is optimal to admit at least one secondary user into the
network, through (7), we know that this price must be greater

than or equal to
. _ . LO/,y  pLO
pmn H(y)= min  (A"%() — A"y +1)).

By observing how (8) changes with respect to y, one can come
to the conclusion that H{y) is increasing in y, the minimum
value such a price p can take is

BE & E(X,C)

p _H(O)_KE()\,O) =KE(\C). )
Therefore, as long as the price is greater than pPE, there exists
at least one state y (i.e., when the system is empty) at which
admitting secondary customers yields a better revenue rate than
the revenue rate under a lock-out policy. [ |

Hy)=K for0<y<C -1

Theorem IV.1(a) states that if the price exceeds pBF, then
serving secondary demand yields strictly higher revenue for a
provider than not serving it. Conversely, part (b) of the the-
orem states that secondary demand does not lead to any rev-
enue improvement otherwise, implying that rejecting the entire
secondary demand is optimal for such prices. In effect, at pBE,
the immediate revenue balances the opportunity cost of a sec-
ondary request. We therefore coin pB¥ as the break-even price
of a provider.

It is striking that the break-even price expression (9) does
not depend on the secondary demand. Namely, any price above
pBE strictly improves the revenue of a provider regardless of
how much secondary demand it generates. This result can be
intuitively understood as follows: The size of secondary de-
mand does not play a role in profitability, for any positive sec-
ondary demand can be thinned down arbitrarily by the coordi-
nated access policy. We have shown that at the break-even price,
the lock-out policy stops being optimal, which is equivalent to
stating that secondary access is profitable when the network is
empty. Since the profitability of the first admitted secondary
user depends on a network where there are no other secondary
users, secondary demand does not affect the break-even price.

Fig. 2(a) and (b) illustrates how the normalized break-even
price (i.e., pP¥/K) changes with respect to relevant network
parameters, namely the system capacity C' and the network load
A/C. The normalized price is given by the Erlang-B function,
which has been well studied in teletraffic theory. In particular,
upper and lower bounds are obtained in [13] and [17], and it is
demonstrated in [16] that for a given arrival load A, the Erlang-B
function (hence, the break-even price) is a convex function of
the capacity C, as can be observed from Fig. 2(a). It is also worth
noting that as the network capacity increases, the value of the
break-even price at the critical load where A = C' decreases as
demonstrated in Fig. 2(b).

Fig. 2(b) shows that for an overprovisioned network (in which
primary load X is below the capacity C by a significant margin),
the break-even price is substantially lower than the primary
price. We observe that for C' = 16, the normalized break-even
price is negligible compared to the primary price for network
loads below 40%, a number close to the network utilization mea-
surements reported in [2]. As the network capacity increases,
it takes even higher network loads to observe the slightest in-
crease in the break-even price, almost as high as 80% when the
capacity is increased to C' = 128. This result suggests that, in an
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overprovisioned network, spectrum sharing at secondary prices
that are low relative to primary reward would result in net profit,
regardless of the secondary demand.

B. Best Response

In competing for and serving secondary demand, a provider's
action consists of an advertised price for secondary access and
an access policy to coordinate secondary access. For any price,
and for any demand the price raises, each provider's revenue is
highest under optimal coordination. Hence, optimal coordina-
tion is a dominating choice uniformly for all situations. In this
section, we will assume all providers implement optimal coor-
dinated access. With this assumption, each provider's strategic
action reduces to a pricing decision.

Before we move to establish market equilibrium, it is bene-
ficial to first establish the strictly dominated strategies for both
providers under optimal coordinated access. This allows for the
characterization of a provider's best response strategy for any
price its competitor chooses. In the next theorem, we state that
the best response of a provider is to set its price slightly lower
than the competition in order to capture all of the secondary de-
mand rather than sharing the secondary demand at that price.
This can be formalized as follows.

Theorem IV.2: If p > pBE, for any given o € [0, 1], there
exists a price p' € (pBE, p) such that

W*(p',o(p')) > W*(p, ac(p)). (10)
Before we prove Theorem IV.2, it is beneficial to establish
the strictly dominated strategies for both providers under op-
timal coordinated access. This allows for the characterization
of provider i's best response strategy for any price its com-
petitor chooses. To do so, we introduce two lemmas. In the first
lemma, for two given secondary demand values of 1 and o4
such that o1 > o2, we will demonstrate that the revenue rate
when facing higher secondary demand ¢ is never less than
the revenue rate when facing lower secondary demand o (i.e.,
W*(pi,o1) > W*(p;, 02)).
Lemma IV.1: Letp > 0. For any 01, ¢ such that o1 > o9

w (p7 0-1) > w (p7 UQ)‘

Proof: Consider the optimal access policy A*(p, o2) that
yields a revenue rate of W*(p, o3) for demand 5. Now con-
sider a policy fl(p, o1) for demand o4, which does a random
thinning of the secondary demand and brings it to o2 (i.c.,
A(p,o1) accepts each arrival with probability o2/0;1. Note
that the thinned arrival process is still Poisson [22]. Once the
secondary demand is reduced, access policy A*(p, o) is im-
plemented. Hence, A(p, o1) and A*(p,o2) generate the same
revenue rate, i.e., W(p, o1, A) = W*(p, o2).

Since by definition A*(p, 1) is the optimal coordinated ac-
cess policy when secondary demand is o1, we know that it does
not generate a revenue less than the revenue generated by the
policy we have just described. We can formulate this conclu-
sion as

I'V*(p, Ul) > I/V(p’ 0'1,A) = ﬂ/*(p, UQ)' (11)
|
In the previous lemma, we have demonstrated that an increase
in secondary demand does not result in a decrease in the revenue
rate of a provider. In the second lemma, we will build on the

previous lemma to show that when the price is set above the
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break-even price, an increase in secondary demand translates
into strict increase in the revenue rate.

LemmaIV.2: Letp > pBE Forany oy, o3 suchthatay > oy:
W*(p,o1) > W*(p, 02).

Proof: We know that when the price is greater than the
break-even price (i.e., p > pPF), an optimal admission policy
will never choose the threshold value 7' = 0. Since in this
lemma we only consider such prices, we can formalize this re-
sult through the formulation

pmax, W(p,o,T) = max, W(p,o,T).

In Mutlu et al's work [30], it is shown that for a fixed
admission threshold value 7' > 0, W{(p,o,T) is a unimodal
function with respect to & for any p. In other words, W{p, o, T')
is strictly increasing until it reaches a certain maximum and
strictly decreasing afterwards. We define the value of o at
which W (p, o, T) attains its maximum value over the interval
[0, Omax| for an admission control policy with fixed threshold
T by

or = argmax W(p,o,T). (12)
o€[0,0max)
We define d to be the minimum of the distances between any

two distinct maxima of W (p, o, T} for different values of T' so
that

d= inf
m,nel,2,...,C
Since there are a finite number of possible threshold policies,
the infimum is achieved (i.e., inf = min) and d > 0. Having
defined the minimum distance between distinct maxima of two
different threshold revenue functions, we will prove the lemma

by first showing that

|Em_5n‘> Em #En

W*(p,x+¢) > W (p,z) Va € [0, omax) and e < d
where ¢ is a constant, the value of which does not depend on the
secondary demand zx.

It should be noted that the value of ¢ does not depend on
z. From the way ¢ has been chosen, there can be at most one
distinct maximum over the interval [z, z + €]. In the rest of this
proof, let T denote the optimal threshold value at = (if there are
more than one, we can choose any). We will complete our proof
by distinguishing between two cases, as illustrated in Fig. 3.

Case 1: T3 ¢ [x,2 + €).

Given the unimodality of W (p, o, T), this function must be
either decreasing or increasing with respect to ¢ in the interval
(@, z + €]. Furthermore, it must also be true that z < 7. Other-
wise, if z > 77, through the way we have defined 77 in (12) we
would have W*(p, z) = W(p,z,T) < W(p, Gt T), which is
a contradiction to Lemma IV.1, which we can rewrite in the fol-
lowing form:

W*(p,x) > W(p,54,T) Va7

Thus, W(p, o, T) cannot be decreasing, but must be increasing
in o over the interval [z, 2 + €). By definition of optimality

W*p,z+e)>Wpa+eT)>Wp,2,T) =W (p,ux).

Case 2: G4 € [z, x + €).

W (p, o, T) attains its maximum value over [z, z + €) at T
Given the unimodality of W (p,o,T) with respect to o, the
revenue function must be increasing on the interval [z,74).
Next, we show that the revenue must remain increasing over
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Fig. 3. Illustration of the two cases considered in the proof of Lemma IV.2. (a) Case 1: &7 ¢ [z, 2 + €). (b) Case 2: 7+ € [z, 2 + €).

[0, x+€) for at least one other fixed threshold policy, which we
prove by contradiction. Suppose that at ¢ = 7 there exists no
threshold policy under which the revenue rate is both increasing
and greater than or equal to W (p, &, T'). Then, the revenue func-
tion under the optimal policy must be decreasing right after 7
as it is continuous in ¢ (see also proof of Theorem IV.2). This
contradicts Lemma IV.1. Hence, there must exist at least one
other threshold policy A = T" such that the revenue rate under
this new threshold value W (p, a4, 7") is increasing and satis-
fies W(p, 77, T") > W(p,7 4, T) Since the interval [z, z + €)
contains at most one distinct maximum, W (p, 2, T') must re-
main increasing over the interval [G;,2 + €). Then, we can
conclude

W*(p,x+e) 2 Wp,z+e1)>W(p,7s,1")
> W(p7 Ej“v T) > W(p7 €, T) =W (p7 l)
Having shown that W* (p, z+¢) > W*(p, z) fore < d under
both cases, we can finally proceed with making the connection
between our proof and the lemma by first stating
W*(p,o1) > W*(p,a1 —€) > W*(p,o1 —2¢) > ---
> W*(p, o1 — ke) (13)

where k is the largest integer such that o1 — ke > o5. Since we
can take any € < d, we can choose one final ¢ = o1 —ke—03 <
d, such that

W*(p, 01 — ke) = W*(p, 02 + ¢') > W*(p, 02). (14)
Combining (13) and (14), we get
W (p,o1) > W*(p,03).
|

Proceeding with the proof of our theorem, we show that as
long as the price is lowered by less than a certain amount, the
relationship established in Lemma I'V.2 can be extended to dif-
ferent prices such that W*(p',o(p')) > W*(p, ao(p)) where

p < p.
Proof of Theorem IV.2: Through Lemma IV.2, we know
that the following inequality holds:

W*(p,a(p)) > W*(p,ao(p)). (15)
For a fixed threshold value 7', the revenue takes the form

W(p,o(p), T) =(1— Ba(\,0(p),T))o(p)p

+(1 = Bi(\o(p), T)AK  (16)

where

Bi(Aeo(p),T)

Ota(n™rc""
Cl

+ A+ o)T D 2T

o ZTfl QFalp)™

n=0 n!

and
By(\ a(p), T)
o n—T
. (A+ U(p))T ZZ:T AT
- T—1 (A+o n > n-—
Yoco TR+ (o (0)F Ty
the derivation of which is given in [30]. Since the respective
blocking probabilities of primary secondary users B;( -} and
Bs(-) are a function of p through o(p), which is assumed to be
continuous in p, we conclude from (16) that W{p, o(p),T) is
also continuous in p.

From the way we have defined the optimal access policy in
(3), W*(p, o(p)) is also continuous in p as we consider a finite
set of possible values that 7" can take [18, pp. 11 and 135].

First, let us assume that there exists a p € (p®F, p) such that

W*(p,a(p)) = W*(p,o(p))-
Then, it follows by (15) that

W*(p,o(p)) > W*(p, oo (p))
and p' can be set equal to p. On the other hand, assume that there
exists no such price p < p for which

W*(p,a(p)) = W*(p,o(p))-
This implies that the revenue is monotonically increasing for all
p < p such that

W*(p,a(p)) < W*(p,a(p))- (17)
Then, by continuity, the following can be stated for
W*(p,o(p)): Ve > 0,3d(e,p) > 0s.t. if [p — p| < 4, then

(W (p,o(p)) = W*(p,a(p))| <e.
Making use of (17) and our assumption that p < p, we can
remove the absolute value from the previous equation and sim-
plify it to

W (p,0(p)) = W*(p,0(p)) <. (18)
Taking ¢ = W*(p,o(p)) — W*(p,ac(p)) and canceling
the terms W*(p,o(p)) on both sides of the inequality
(18), we obtain —W*(p,a(p)) < —W*(p,ac(p)). Multi-
plying both sides by —1, the equation finally takes the form
W*(p,e(p)) > W*(p, ac(p)) and p’ can be set equal to p. H
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Fig. 4. Representation of a price war as a result of best response dynamics
under coordinated access.

Theorem IV.2 states that if a provider profits at a given
price, obtaining the entire secondary demand at that price is
strictly more profitable than obtaining part of the demand at
a slightly higher price. This property reflects an incentive for
each provider to unilaterally deviate from offering the same
price as its opponent, provided that the price is strictly above
its break-even price. This best response dynamics is illustrated
in Fig. 4, and the resulting market equilibrium is formally
analyzed in Section [V-C.

C. Market Equilibrium

Having identified the best response of a network provider
under coordinated access in Theorem IV.2 in Section IV-B, we
now proceed to establish the market equilibrium. Given ini-
tial prices p; and ps such that p; > pPE,i = 1,2, the two
providers will lower their prices in turn. This process continues
until the market price drops so low that the provider with the
higher break-even price finds himself unable to lower its price
any further without incurring a net loss.

We start with a characterization for competitive equilibria in
the considered scenario. However, before we do that, it is im-
portant to recall the formal definition of a Nash equilibrium.

Definition IV.1: A pricing strategy profile (py, p2) is a Nash
equilibrium for rewards R;(p1, p2) if and only if

Ri(p1,p2) = max Ri(p,p2)
and

Ry(p1,p2) = m;xsz(php)-

Next, we provide a theorem that identifies possible market
outcomes in terms of Nash equilibria, the proof of which can be
found in the Appendix.

The first part of the theorem is concerned with the case when
one provider (without loss of generality provider 1) has strictly
lower break-even price than the other provider. In the theorem,
we show that the provider with the lower break-even price
captures the entire market by pricing below its competitor's
break-even price. However, when the price is continuous, it
is impossible to provide an exact price that achieves this best
response. Hence, following a well-known approach used in
game theory to address this technicality [33, pp. 64—67], we
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assume that each provider's price is a multiple of a sufficiently
small discretization step e.

Additionally, the exact value of the equilibrium price p; de-
pends on where provider 1's revenue is maximized over the in-
terval [pP=, pB¥ — ¢]. We formally define this maximum as the

following:

W, = max

W (p, a(p)). 19
. 1 (p,o(p)) (19)

Note that the revenue may attain this maximum at several prices
on the interval, which we denote by the following set:
arg max

P= Wi (p,o(p)).
pEPBE pEE —¢]

The other provider is unable to underbid its competition in a
profitable fashion. Hence, it opts for any price that does not cap-
ture the secondary demand. In the equilibrium, this price must
also not give an incentive to the winner to deviate to a higher
price. We next define the lowest price provider 2 can choose for
which there exists an incentive for provider 1 to deviate from P

PP 2 arginf { max W{(p,o(p)) > WI} . @D
p>pEe | PE[PTT P

If no such price exists, then we simply set p = 00. Then,
this price effectively limits the price choice of provider 2
from above. Setting any price above p™#* creates an incentive
for provider 1 to deviate, thus disturbing the equilibrium. If
provider 2 were to choose a price pa > p™#*, then what follows
is that provider 1 raises its price to this new maximizing price.
However, provider 2 would then respond with underbidding
provider 1 as a result of Theorem IV.2.

The second part of the theorem concerns the symmetric case
when both providers have the same break-even price. In that
case, the unique Nash equilibrium outcome is defined by both
providers charging their break-even prices, unable to capture the
entire market due to profitability constraints.

Theorem IV.3 (Nash Equilibria):

a) IfpP¥ < pB¥ then one or more Nash equilibria exist and

have the strategy profile (py, p2) where

pL€P
, max)

p2 € (p1,p
where P is as given by (20) and p™?* by (21).
b) If pPP = pBE then there exists a unique Nash Equilib-
rium given by the strategy profile (p1, p2) such that

(20)

niax

b1 =p2= p]13E~
Proof: See Appendix. [ |

The following two examples aim to illustrate that qualitative
differences in the placement of Nash equilibria are governed by
the secondary demand function o (p). These examples are based
on demand functions commonly used in the economics litera-
ture that are respectively exponentially and linearly decreasing
with price [37].

Example IV.1: Suppose that the secondary demand function
follows a negative exponential demand o(p) = 10e 027,
which indicates sufficiently low price elasticity of demand so
that the revenue rate remains increasing with price. We set the

network parameters for both providers as
(>‘17017K1) = (172720) (>‘27027I{2) = (1075735)

which, through (9), yield p2¥ = 4.00,p8F = 19.74.
Fig. 5(a) demonstrates the low-elasticity property of provider
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Fig. 5. Different reward maximizing prices as provided in Examples IV.1 and IV.2. (a) Provider 1's reward maximized just below competitor's break-even price
when secondary demand is o(p1) = 10e °-2P1 . (b) Provider 1's reward maximized well below competitor's break-even price when secondary demand is o (p1) =

10 — 0.5p1.

1's revenue rate function, Wy (p1, o (p1)). The revenue rate is
clearly maximized when the price is py = 19.74 — ¢, at a price
slightly below the other provider's break-even price.

Example IV.2: In this example, we consider a linear demand
function o(p) = 10—0.5p. The network parameters and thus the
break-even price are the same as in the previous example, which
we omit. Under this new and faster decreasing demand function,
we plot the revenue rate in Fig. 5(b). The revenue rate achieves
its maximum at p; = 15.76, after which it demonstrates high
elasticity and starts to decrease with price. This results in the
revenue maximizing price being less than pB® = 19.74. There-
fore, facing such demand, provider 1 would lower its price fur-
ther below even though its competitor cannot match it without
incurring a net loss, which demonstrates our result stated in
Theorem IV.3(b).

Comparison to Classical Bertrand Duopoly: Theorem IV.3 es-
sentially asserts that the equilibrium outcome of competition for
secondary demand is a price war. Price wars are also typical out-
comes in the classical Bertrand duopoly, hence it is worthwhile
to put the two settings in perspective. In the Bertrand game, for
a given price, both the revenue and the cost are linear functions
of demand. In contrast, in the present setting, neither revenue
nor cost of secondary service are linear in secondary demand,
primarily because both quantities rely heavily on blocking prob-
abilities that are highly nonlinear in the demand. In addition, the
Bertrand model precludes any capacity constraints and assumes
that all demand can be satisfied, whereas the model of this paper
is centered on a fundamental limitation in capacity. Yet, inter-
estingly, the equilibrium of the present game resembles (and,
depending on the secondary demand function, may be identical
to) the outcome of a Bertrand game in which marginal cost is
constant and equal to the break-even price.

This similarity is a consequence of two nontrivial proper-
ties established in the present paper: 1) insensitivity of break-
even price against secondary demand; and 2) Theorem 1V.2,
which indicates that having more secondary demand is always
more favorable provided that secondary service is priced above
break-even price. Both properties, however, rely on the as-
sumption of optimal coordination of secondary access and do
not necessarily extend to arbitrary access policies, as illustrated
in the sequel.

Extension to Multiple Providers: Equilibrium strategy profiles
given in Theorem IV.3 can be generalized to an arbitrary
number of providers competing for the secondary demand,
each with their own primary users, capacities, and primary user
rewards: Consider N such providers, and let pP¥ continue to
represent the break-even price of provider i. Without any loss
of generality, let us reindex the providers if necessary so that
pr® < pPE < pBE < ... < pRE
Furthermore, we define n = max{i : pP® = pPE}. Hence,
n is the number of providers that share the lowest break-even
price. We generalize the two cases presented in Theorem IV.3.
e Ifn > 1, then any price profile (p1.p2, ..., pn) such that
p,-:p]fE fori=1,2,...,n
and

pi > pF fori=n+1,n+2,...,N
is a Nash equilibrium. In each such equilibrium, providers
1,2,...,n service the secondary demand at their
break-even prices, thereby generating no additional
profit. The secondary demand is split among these
providers according to an arbitrary probability vector
(a1, Q2, ..., 01, Q] Where > a; = 1,05 > 0, which
has no bearing on equilibrium prices. The remaining NV
— n providers are not able to capture any secondary
demand.

* Ifn =1, then there is a single provider whose break-even
price is lower than all the rest. In equilibrium, this provider
captures the entire secondary demand at a strictly profitable
price, while the remaining N — 1 providers cannot serve
any secondary demand. In particular, Nash equilibria have
the form

p1€73}
and
pin?E fori=2,...,N

and at least one provider j # 1 chooses a price such that
p; < p™, where p™®* is defined as in (21), so that there
is no incentive for provider 1 to deviate from P.
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Quality of Service: Quality of service (QoS) plays an impor-
tant role in wireless services. In this paper, QoS is implicitly
captured through the implementation of a coordinated access
policy. Under this policy, the QoS experienced by primary users
will naturally be higher than that experienced by secondary
users since the provider reserves a certain part of its network
capacity for the exclusive use of primary users. A possible
refinement of the model is through the introduction of penalties.
Specifically, whenever a provider is unable to accommodate
a service request of an incoming user, it would compensate
the blocked user by paying a fee (or giving a discount). If the
penalty is imposed only when primary users are blocked (sec-
ondary access is opportunistic, and therefore has no associated
penalties when blocked), then our results still hold through a
similar analysis.

V. UNCOORDINATED ACCESS POLICY

In this section, we consider equilibrium regimes that arise
when competing providers grant uncoordinated access to sec-
ondary demand. We shall argue that such equilibria can be dras-
tically different than those under an optimal coordinated access.

Under uncoordinated access, a provider does not differentiate
between primary and secondary users in granting spectrum ac-
cess requests. In turn, both types of users experience the same
blocking probability. This probability depends on the aggregate
demand and system capacity and can be computed using stan-
dard techniques in teletraffic. Namely, when provider ¢ serves
secondary demand o, the two blocking probabilities are

Bisx(Ni,0,4;) = Bi1( N, 0, 4;) = E(\; + 0,C5)

where E(\; + o, C') is the Erlang-B formula.
The revenue rate of provider i, when serving secondary de-
mand ¢ by charging p; per admitted request, is then given by

Wipi,o) =(1 — E(X; + a,C;))ap;

+ (1 — E’()\Z + o, CZ)))\ZK, (22)

where the first term corresponds to the reward rate collected
from secondary users that gain admission to the network, while
the second term corresponds to the reward rate collected from
the serviced primary users. (Here and in the rest of this section,
we will consistently use the symbol~ to indicate the quantities
associated with uncoordinated access.) Once again, for analyses
in which we consider a single provider, we will drop index ¢
from our notation for the sake of simplicity.

A. Profitability

We recognize W (p,0) as the revenue rate of a provider
when it does not serve any secondary demand. Similar to the
profitability conditions for the optimal coordinated access case
stated in Theorem IV.1, note that

W (p,o(p)) > W(p,0)

if and only if p > pPF, where pPF satisfies
BE_ (B +0(7),C) — E(\, C)NK o)

g (1— E(\ + o (pPF), C))a (3PE)

Hence, the provider incurs loss and has no incentive to serve
the secondary demand at a price below pBE. In turn, B is the
break-even price of a provider under uncoordinated access.

(23)
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Fig. 6. Revenue rates under optimal coordinated and uncoordinated access
versus secondary demand—network parameters: p = 30, A = 13, C = 20,
and K = 50.

It is instructive to compare the break-even prices under unco-
ordinated access and optimal coordinated access. First, p5% >
pPE because if the optimal admission policy does not yield pos-
itive profit from secondary demand, then neither does any other
policy. For typical parameters, this inequality is strict. Conse-
quently, providers need to charge a higher price to secondary
users in order to avoid a net loss, which results in the tendency
to bid higher prices under uncoordinated access. Second, in con-
trast to pPE, the break-even price pE¥ for uncoordinated access
is given by an implicit equation that depends on the secondary
demand o (p).

B. Market Sharing

While we established in Lemma IV.2 that market sharing is
not favorable under optimal coordinated access, these results do
not necessarily extend to a case when uncoordinated access is
implemented. As a matter of fact, under an uncoordinated ac-
cess implementation, whether the revenue rate increases or de-
creases by sharing secondary demand depends on another crit-
ical parameter we shall establish later.

Before we get into our analysis, it is insightful to compare
how the revenue rates W (p, o) and W*(p, o) behave under un-
coordinated and optimal coordinated access strategies. Fig. 6 il-
lustrates the two revenue rates for a range of secondary demand
o, when all other parameters are fixed. When plotting both rev-
enue rates, the secondary price p is chosen above both break-
even prices so that the optimal revenue rate W*(p, o) is strictly
increasing in o. As a by-product of optimality, W*(p,¢) >
W(p,o) under all circumstances.

However, W (p, ) has an important qualitative difference
relative to its optimal counterpart: It increases for a range of
secondary demand ¢ and decreases afterwards. This happens
because for small &, secondary users enhance revenue by using
the leftover capacity from primary users, but as ¢ increases, sec-
ondary access occurs at an increasing expense of primary ac-
cess, and that leads to a decline in revenue if primary users are
more valuable (that is, if p < A). This property opens the pos-
sibility that W (p, ao) > W (p, o), in which case a provider
has incentive to share secondary demand at prices higher than



KAVURMACIOGLU et al.: COMPETITION IN PRIVATE COMMONS: PRICE WAR OR MARKET SHARING? 39

break-even. Consequently, it has a profound impact on the out-
come of a competitive setting.

To formalize this intuition, let us define p™* as the solution
to the following:

(E(A+0c(p),C) — E(A+ ac(p), C))AK

P U= EQ+a(p), O)o(p)— (1- EQtac(p))ac(p)
(25)
It can be verified directly from (22) that:
Ve > W(p,o(p)) forp < pM*
W(p, aa(p)) { S ﬁ;(p’o_(p)) fOI'p 2 pMS. (26)

Thus, only up to the price value pMS, any provider would ben-
efit from a reduction in its secondary demand. The price p*> can
be interpreted as a market sharing threshold for the provider:
Any price above this threshold renders secondary demand too
valuable to share and warrants a price war. Below this threshold,
the provider has an incentive to remain at an equilibrium that
reflects market sharing, provided the price satisfies the initial
profitability condition in (23), which translates to being above

the break-even price pPF.

C. Profitable Sharing Interval

In this section, we seek to determine the relationship between
the maximum market sharing price pM> and the break-even
price pBE. In particular, if one can show that one price is al-
ways greater than the other, this can greatly simplify the results
by ruling out or strictly establishing a preference to share the
secondary market before making a negative profit. We present
our results in the next theorem for the special case of fixed de-
mand (we later present numerical evidence that similar results
should hold for elastic demand).

Lemma V.1: For a fixed secondary demand such that a(p) =
o, the following price relationships always hold under an unco-
ordinated access policy:

p\BE § pl\/IS < K. (27)
Proof:
a) First, we prove pP® < pMS_ Through (24) and (25), we
can rewrite this inequality in the following form:
1-EA+0o(p),C)
E(A + U(p), C) o E()‘v C)
1— E(A+ U(p),O) —a- aE()‘+ OéO'(p),C) -

Next, using the well-known recursive equation of the
Erlang-B formula [24]

AE(\C - 1)
E\NC)=
(A.€) C+AEN\C-1)
we can expand (28) and after some algebra and regrouping

of the terms, we can show that the inequality pBF < pMS
is equivalent to demonstrating that

alA+0)E(A+0,C -1+ (1—-a)AE(ANC 1)
> At ac)E(A+as,C—1). (29)

Define go—1(A) = A - E(\,C — 1), which represents the
traffic loss rate when the arrival process is Poisson with
rate A. For (29) to hold, we need

age 1(A+a)+{(1—a)go 1(A) > gc 1(A+ag). (30)

One can observe that (30) is by definition the convexity
condition on the traffic loss as a function of the arrival
rate, which is proven in [24]. Therefore, pE¥ < pMS,

b) We now show that the market sharing price is always less
than the primary reward, i.e., pM® < K. Recalling (25),
this is equivalent to the following:

(E(A+0,C)— E(A+ a0,C))A
0 _E0+0.0)0 (1 _E(\tao)as
After some rearrangement of the terms and substituting
gco(A) for X - E(), C), the inequality takes the form

gecA+0) —go(A+ac) <o(1l —a).
Upon careful observation, this inequality condition holds if one
can show that
dgc (M)
o(A) = 31
9o (A) I\ (31)
In the paper [24], it has been demonstrated that g-{\) < 1
for ' > 0. The equality condition stems from the fact that the
induction proof starts from ' = 0, for which go(A\) = A and
hence g,-(A) = L. If one would start the induction from C' = 1,
using the following recursive formulation of g (\):

Ago-1(A
CH+ Agc1
provided in [24], one can show that g1 (\) = A?/1 + A. Taking
the derivative with respect to A

<1

(32)

A% 42X
AN = —— < 1. 33
9N = o imr1 © (33)
Then, following the same steps as in [24], one can show that
9-(A) < 1 for C' > 1, which establishes (31). |

Lemma V.1 establishes a fundamental relationship between
the break-even and market sharing prices and the primary
reward K, thus proving the existence of a profitable market
sharing price interval. This interval plays a critical role in
defining the market outcomes, as we shall demonstrate in
Section V-D.

D. Equilibrium

Competitive equilibria under uncoordinated access can now
be determined depending on the critical price values p2F and
pMS of all providers i. Fig. 7 illustrates a particular placement
of these parameters for two providers. In the illustrated set-
ting, the market sharing intervals [pPE, p}*5] and [pBE, p3*°]
have a nonempty intersection; therefore, there exist common
price values that are above break-even values and acceptable for
market sharing for both providers. In turn, there is a continuum
of equilibria strictly above the break-even prices.

We conclude this section with a numerical example con-
cerning a symmetric setting.

Example V.1: We consider two network providers with iden-
tical parameters: primary arrival rate A; = 13, capacity C; =
20, and revenue collected per serviced primary user K; = 50.
We continue to assume inelastic secondary demand whose value
is chosen to be ¢ = 2(}. We assume that secondary demand splits
equally in the case of equal prices, that is, oy = ay = 0.5.

The break-even price for coordinated access is computed
as 0.91; hence by Theorem IV.3, the unique price equilibrium
under coordinated access is p; = py = 0.91, and no provider
profits from secondary demand.
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Fig. 7. Point (A) represents the highest price Nash equilibrium under optimal
coordinated access, and the continuum of points in (B) is the set of Nash equi-
libria under uncoordinated access.

TABLE I
EQUILIBRIUM PRICES AND RESULTING PROFITS FOR THE SETTING CONSIDERED
IN EXAMPLE V.1

Access Policy

Equilibrium price

Equilibrium profit

Coordinated
Uncoordinated

p1=p2 = 0.91
23.46 < pr = po < 34.11

P=P,=0
0< P =P <121.54

The break-even price for uncoordinated access is pre =
23.46, and the market sharing threshold is p%VIS = 34.11. Hence,
any price profile (p, p) where p lies in the interval [23.46, 34.11]
constitutes a competitive equilibrium. For example, if provider
—i adopts the secondary price p_; = 30, then

Wi(pi, o) = 74.66, if p; = 29.99
Ri(p1,p2) = { Wi(p;,0.50) = 90.01, if p; = 30
VVZ‘(]),‘,O) =0, if p; > 30

In particular p; = 30 is the best response of provider %, so
the price profile (30, 30) is a Nash equilibrium. A comparison
of possible equilibria and associated profits under both access
strategies is given in Table I. It is worth noting that in the co-
ordinated access policy, the price war drives the profits of both
providers to zero by lowering the prices to the break-even price,
which is the same for each provider. On the other hand, uncoor-
dinated access gives a range of prices yielding positive profits
in the sharing interval. Note that profit from primary users is not
included in either case.

Interestingly, an uncoordinated access policy, which is sub-
optimal to implement for a provider in isolation, results in com-
petitive equilibria in which all providers are strictly better off
than resorting to their optimal individual policies.

Example V.2: This time, we consider an elastic demand to
demonstrate that our results extend beyond inelastic secondary
demand. Once again, there are two network providers with iden-
tical parameters: primary arrival rate A; = 30, capacity C; =
50, and revenue collected per serviced primary user K; = 50.
We assume a secondary demand that is exponentially decreasing
with the price o(p) = 80e799%?, We assume that secondary
demand splits equally in the case of equal prices, that is, a1 =
[ 0.5.

The break-even price for coordinated access is computed
as 0.01; hence by Theorem IV.3, the unique price equilibrium
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under coordinated access is p1 = p2 = 0.01, and no provider
profits from secondary demand.

The break-even price for uncoordinated access is poF =
20.06, and the market sharing threshold is p}® = 33.39. Hence,
any price profile (p, p) where p lies in the interval [20.06, 33.39]
constitutes a competitive equilibrium. The same arguments dis-
cussed within Example V.1 also apply here.

VI. CONCLUSION

In this paper, we provided results on the competitive nature
of a secondary spectrum market with multiple firms by investi-
gating the equilibrium outcomes. Our focus was on two pro-
posed regimes for secondary spectrum access, namely coor-
dinated access and uncoordinated access under private com-
mons. This kind of market analysis can help provide impor-
tant guidance to a firm's strategic decision process by explicitly
determining the parameters on which market success depends.
Given the current state of the wireless industry, this research
may encourage the adoption of dynamic sharing technologies.
To achieve this goal, we formulated the problem as a nonco-
operative game, in which network providers with finite spectral
capacities choose price and access control strategies to follow
with respect to secondary users.

We started our analysis with a threshold-type optimal coor-
dinated access policy. We demonstrated that, in a secondary
market, each provider has a unique break-even price, which
serves as the minimum price at which profitability of secondary
provisions is guaranteed regardless of the secondary user de-
mand. We provided an explicit formula to calculate the break-
even price, which also establishes its relationship with the net-
work parameters (i.e., the primary load, primary reward, and
system capacity). The break-even price of each provider is in-
dependent of the system parameters of other providers. The
break-even price is, in general, significantly lower than the pri-
mary reward, indicating that secondary access can be offered
for relatively low prices. For example, the break-even price is
less than 1% of the primary reward if the network load is below
68% and the number of channels C exceeds 32. Even at the crit-
ical load where the primary load is equal to the system capacity
(i.e., A = (), the break-even price remains below 20% of the
primary reward for C' > 16.

Next, we provided a detailed study of the strictly increasing
property of the revenue rate under optimal coordinated access
through threshold type control and unimodality of the revenue
function for each threshold. This leads to the establishment of
the best response for a network provider, which is to always
underbid the competition as long as it finds it profitable to
do so. In the presence of multiple firms, this pricing strategy
results in a price war where a single provider (that with the
lowest break-even price) captures the entire secondary spec-
trum market, effectively forming a monopoly. We then listed
the possible market outcomes using the notion of Nash equi-
librium in a noncooperative game where two or more network
providers implement an optimal coordinated access policy.
While the demand function does not play a role in determining
the identity of the winning provider, we showed that is does
affect the revenue-maximizing price for that provider and the
placement of the Nash equilibrium.

Finally, we showed that the market dynamics fundamentally
differ when providers implement uncoordinated access. We
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highlighted that the break-even price is no longer insensitive to
secondary demand, and market sharing becomes a possible best
response, determined by another price threshold. Furthermore,
we demonstrated the existence of a profitable sharing price
interval for fixed secondary demand (we verified numerically
that the profitable sharing interval exists for other forms of sec-
ondary demand). It is worth noting that even though a provider
might find it desirable to share the market, it would still go into
a price war for price values higher than its market sharing price
pMS | thus preventing convergence to an arbitrarily high price
for secondary access. The possible market outcomes under
an uncoordinated access policy become complex for general
forms of demand functions, but deserve further study since they
may result in a larger number of providers participating the a
secondary spectrum market as well as the realization of higher
revenues rates than possible under an optimal coordinated
access policy.

APPENDIX

Proof of Theorem IV.3: We will prove the two parts of
Theorem V.3 separately, first when pPf < pBPE and second
when pPE = pBE. Under each case, we will demonstrate that
the price pairs described in the theorem give the Nash equilibria
by proving that neither provider i = 1, 2 can increase its reward
R;(p1, p2) by employing any other strategy profile.

Part 1—pP¥ < pB¥: In a given Nash equilibrium, the pricing
strategy each provider chooses is given by

P € P
and

p2 € (p1,p™). (34)

Under these strategies, provider 1's reward is

Rl(p17p2) = W: > IVf(p].)O)

where W is given by (19) and W7 (p1, 0) represents the base
revenue rate provider 1 collects from the primary users in the
absence of secondary users. Thus, provider 1 collects a positive
revenue from capturing the entire secondary market above its
break-even price. On the other hand, provider 2 is unable to
attract any secondary demand and faces the reward

Ry(p1,p2) = W3 (p2,0).
We first analyze the possible increases in reward when
provider 2 chooses other price strategies.

Suppose provider 2 chooses any price py < pi. Then,
provider 2 captures the secondary demand, but since
ph < p1 < pBE, this is a nonprofitable price. Hence, provider 2
chooses to implement a lock-out policy that is reflected in the
reward

Ra(p1,py) = W3 (ph, o(ph)) = W5 (p2,0)
by Theorem IV.1. Therefore, Ra2(p1,p5) = Ra2(p1,p2).

Now suppose provider 2 chooses any price py > p™**, which
we have previously defined in (21). This action does not change
the reward of provider 2 as it remains in a position where it cap-
tures no secondary demand. Hence, R (p1, ph) = Ri(p1,p2).

Having proven provider 2 has no incentive to deviate, we shift
our focus to provider 1.

If provider 1 chooses a price p| > po, this results in the loss
of the secondary demand, and its reward becomes Ry (p},p2) =
Wi (p1,0) = Wi(p1,0) < Ra(p1,p2).

If provider 1 chooses a price p} = pa, it shares the secondary
demand with provider 2, and its reward becomes R; (p}, p2) =
Wi (p2, @10(p2)). By Theorem IV.2, there exists an ¢ > 0 such
that

WY (p2; a10(p2)) < Wi (p2 — €,0(p2 — €))
hence Ry (p},p2) < Ri(p1,pz2).
If provider 1 chooses a price p3* < p] < pa, this implies
through (34) that p| < p™2*. By the definition of p™* in (21),
for any price pj < p™®* we have

Wi (9}, 0(ph)) < W

Hence Ri(pi,p2) = Wi(@l,o(®)) < Ri(pi,p2). If
provider 1 chooses a price p; < pbPE, it serves secondary
demand at a nonprofitable price and hence faces the reward
Ri(py,p2) = Wi (p1, o)) = W (p1,0) < Ri(p1,p2).

Finally, if provider 1 chooses a price pj € [pPE, pBE — ¢]
but p; ¢ P, from the way P is defined, the new reward is
Ry (p},p2) = Wi (pl,a(pl)) < W,. Therefore, Ry (p}, p2) <
Ri(p1,p2).

Part 2—pP® = pPE: Since both providers are identical, we
will only consider provider 1. Also, for the sake of notational
simplicity, we will drop the index on the break-even price and
denote it by pBE. Provider 1, when at the Nash equilibrium,
chooses the price strategy p1 = pBP and faces the reward
R, (p17p2) = IVl* (p17 O)

We fix provider 2's strategy to p, = pPF and demonstrate
that provider 1's reward does not improve by choosing any other
action pair.

If provider 1 chooses a pricing strategy pj > pBF, it faces a
reward Ry (py,p2) = Wi (p1,0) = Ri(p1,p2).

If provider 1 chooses any pricing strategy pj < pBE, by defi-
nition of pBF, it faces a reward Ry (p}, p2) = Wi (p1,o(p1)) =
Wi (p1,0) = Ri(p1,p2).

Because of provider symmetry, the same proof follows for
player 2.

Therefore, the only Nash equilibrium is given by the price
pair pP¥ = pBE, from which uniqueness also follows since the
break-even price of each provider is unique.

Having shown that under both cases Nash equilibria exist and
cannot be different from what is stated in Theorem 1V.3, we
conclude our proof. [ |
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