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Abstract—Delay Tolerant Networks (DTN) are networks of
self-organizing wireless nodes, where end-to-end connectivity
is intermittent. In these networks, forwarding decisions are
generally made using locally collected knowledge about node
behavior (e.g., past contacts between nodes) to predict future
contact opportunities. The use of complex network analysishas
been recently suggested to perform this prediction task and
improve the performance of DTN routing. Contacts seen in the
past are aggregated to asocial graph, and a variety of metrics
(e.g., centrality and similarity) or algorithms (e.g., community
detection) have been proposed to assess the utility of a nodeto
deliver a content or bring it closer to the destination.

In this paper, we argue that it is not so much the choice
or sophistication of social metrics and algorithms that bears
the most weight on performance, but rather themapping from
the mobility process generating contacts to the aggregatedsocial
graph. We first study two well-known DTN routing algorithms
– SimBet and BubbleRap – that rely on such complex network
analysis, and show that their performance heavily depends on
how the mapping (contact aggregation) is performed. What is
more, for a range of synthetic mobility models and real traces,
we show that improved performances (up to a factor of 4 in
terms of delivery ratio) are consistently achieved for a relatively
narrow range of aggregation levels only, where the aggregated
graph most closely reflects the underlying mobility structure.
To this end, we propose an online algorithm that uses concepts
from unsupervised learning and spectral graph theory to infer
this “correct” graph structure; this algorithm allows each node
to locally identify and adjust to the optimal operating point, and
achieves good performance in all scenarios considered.

I. I NTRODUCTION

The Delay Tolerant Networking (DTN) paradigm has been
proposed to support emerging wireless networking applica-
tions, where end-to-end connectivity cannot be assumed for
technical reasons (e.g., propagation phenomena, and node mo-
bility) or economical reasons (e.g., lack of infrastructure, low
power nodes) [1], [2], [3]. To cope with this,opportunisticor
mobility-assistedrouting algorithms have been proposed [4],
[5]: messages are forwarded one hop at a time, only when two
nodes are incontact (i.e., move within transmission range);
without full or any knowledge of future contact opportunities,
a forwarding decision normally aims to simply increase the
delivery probability at every step.

To combat the inherent uncertainty of future contact oppor-
tunities, many protocols forward in parallel multiple replicas
of the same content [6] or resort to coding (network coding,
erasure coding). Nevertheless, node mobility (and resulting
contact opportunities) are not entirely random. Instead, weak
or strong patterns are present. To this end, numerousutility-
based routing schemes attempt to differentiate nodes that

are more likely to deliver content or bring it closer to the
destination [7].

Among them, a number of schemes implicitly assess the
strength of (“social”) ties between nodes. For example [8] uses
time of last encounter, and [9] uses contact frequency as a hint
on thesimilarity of mobility patterns. [10], [11] use instead a
metric much akin todegree centralityto identify nodes that
are highly mobile/social; the former scheme is reminiscent
of search in scale-free networks [12], while the latter uses
centrality to choose which relays to “spray” a limited budget of
message replicas to. However, these simple metrics may only
capture one facet of the underlying mobility process, which
can hinder good contact predictions.

Complex network analysis [13] (CNA) has recently been
proposed as a more generic and powerful tool to formulate
and solve the problem of future contact prediction in DTNs.
Past observed contacts between nodes areaggregatedinto a
social graph, with graph edges representing (one or more)
past meetings between the vertices. An edge in this graph
conveys the information that two nodes often encounter each
other either because they have a strong social tie (friends),
or because they are frequently co-located without actually
knowing each other (familiar strangers); thus, existence of an
edge intends to have predictive capacity for future contacts.

Two recently proposed routing protocols, SimBet and Bub-
bleRap [14], [15], make explicit use of CNA metrics and algo-
rithms in order to highlight a node’s position in the aggregated
social graph, and assess its utility to act as a relay for messages
destined to other nodes in the graph. Although the detailed
mechanisms of the two protocols differ (see next Section),
they are both based on the same principles: they assume
that nodes naturally reside in mobility-related communities
(e.g., class, work, home). Increasingly “central” or “well-
connected” nodes in the graph are then chosen as carriers to
relay content over different communities, until a node that
shares many neighbors with the destination [14], (i.e., belongs
to the destination’s community [15], [16]) is reached. These
protocols have been reported to often outperform well-known
DTN routing schemes that are not explicitly “social”.

Nevertheless, it is not well understood underwhat con-
ditions these protocols and their individual components can
achieve the suggested performance, nor is itwhy. What is
more, it is actually not (just) the choice or sophisticationof
social metrics or algorithms that bears the most weight on
performance, but ratherthe mapping from the mobility process
generating contacts to the aggregated social graph.This
mapping presents a tradeoff, where some information about



timing of contacts is lost1. As a simple example, one could
create a link if at least one contact has occurred in the past
between the two nodes [14], but this would result in an overly
dense graph, after a certain network lifetime. Meaningful
differentiation between nodes using complex network analysis
will not be possible. Hence, the social graph created out of
past contacts should bestreflect the underlying (mobility or
social) structure generating these contacts, so that nodescan
be meaningfully differentiated and edges have predictive value.

In this paper, we demonstrate that CNA-based DTN routing
can offer significant performance benefitsonly if applied to
social graphs exhibiting these properties. Furthermore, we
provide an efficient online algorithm to achieve this in a
distributed fashion. We summarize below our contributions:

• We evaluate SimBet and BubbleRap under a range of
synthetic contact generation models (i.e., Small-World
and Caveman) and real mobility traces (i.e., MIT, iMotes
Infocom, ETH). We show that good performance is
consistently achieved only for a relatively narrow range
of aggregation levels, where social graph structure closely
reflects the underlying mobility structure (Section III).

• We investigate different methods to identify this optimal
operating point “on the fly”. Specifically, we useclus-
tering techniques [18] to identify desirable patterns in
observed node similarities, and then use concepts from
spectral graph theory[19] to maximize the modularity
of such clusters, and compare the behavior of various
contact models under different aggregation methods and
levels (Section IV).

• We propose a distributed online algorithm that can adjust
its contact graph mapping to achieve optimal perfor-
mance,regardless of the mobility scenario or the specific
routing protocol used(Section IV).

As a final note, although we focus on unicast routing
in this paper, we believe that the observations made and
methodology proposed are more widely applicable to most
content dissemination algorithms for opportunistic networks.

II. CONTACT AGGREGATION: PRELIMINARIES

In this section, we describe our two case study protocols,
SimBet and Bubble Rap, in more detail, and formulate the
graph aggregation problem.

SimBet [14] assessessimilarity2 to detect nodes that are
part of the same community, andbetweenness centrality3 to
identify bridging nodes, that could carry a message from one
community to another. The decision to forward a message
depends on the similarity and centrality values of the newly
encountered node, relative to the current one: If the former
node has a higher similarity with the destination, the message
is forwarded to it; otherwise, the message stays with the most
central node. The goal is to first use increasingly central

1Other, less compact representations such asTime Expanded Graphs[17]
have been proposed to include time-related information in adynamic graph.
However, considerable scalability issues quickly arise, as one would essen-
tially need to store a graph for every time instant in the past.

2Similarity of two nodes is defined as the number of neighbors these nodes
have in common (see e.g., [20]).

3Betweenness centrality of a node is defined as the fraction ofshortest paths
between each possible pair of nodes going through this node (see e.g., [21]).

(a) t=1h. (b) t=2h.

(c) t=72h.

Fig. 1. Aggregated contacts for the ETH trace at different time instants.

nodes to carry the message between communities, and then
use similarity to “home in” to the destination’s community.

Bubble Rap [15] uses a similar approach. Again,between-
ness centralityis used to find bridging nodes until the content
reaches the destination community. Communities here are ex-
plicitly identified by a community detection algorithm, instead
of implicitly by using similarity. Once in the right community,
content is only forwarded to other nodes of that community: a
local centralitymetric is used to find increasingly better relay
nodeswithin the community.

A. Time Window Based Aggregation

State-of-the-art algorithms tend to aggregate contacts using
a time window.

• Growing Time Window: In the original SimBet [14],
betweenness and similarity are calculated over a social
graph, where there is an edge between two nodes if there
has beenat least onecontact between them atany time
in the past.

• Sliding Time Window: A limited time window is
used for the two centrality value calculations in Bubble
Rap [15], where time is split into 6htime windows,
and only contacts in the last 6h window form edges of
the graph. Yet, this window length is only empirically
determined.

Clearly, for both SimBet and Bubble Rap (and CNA-based
approaches in general) to function properly, social structures
which drive node mobility, such as communities and bridges,
must be correctly reflected in the social graph. We argue that
this heavily depends on the way this graph is constructed out
of observed contacts (contact aggregation).

We illustrate this using a real trace of contacts, collectedat
ETH (see Section III and Table I for details about the trace).
Figure 1 shows that an aggregation over the whole history of
the network is problematic since the social graph gets more
and more meshed. As a consequence, heterogeneity of the
nodes, with respect to the above social network metrics, is no
longer reflected after long network lifetime. The same holds
for aggregation in very short time windows. With nodes shaded
according to their betweenness centralities, we see that after a
short network lifetime (e.g., after 1 hour) most nodes have the



same color since they did not have any contacts yet and thus
their betweenness centrality is not defined (the same holds for
similarity). After 2 hours, enough contacts have occurred to
differentiate many nodes. However, after 72 hours of running
time, all nodes have seen each other and the nodes have
again the same betweenness centrality (and similarity). What
is more, the time window values at which these transitions
occur will differ from scenario to scenario. Consequently,it is
easy to see that time window based aggregation can result to
forwarding decisions that degenerate to random, significantly
affecting the performance of the two protocols, as we shall
see in Section III.

B. Density Based Aggregation

Both the choice of how many contacts and the choice of
which ones to include in the graph affect its quality. In order
for our social graph to be useful for prediction, all edges
included must correspond to “regular” contacts (whose past
occurrence is predictive of a future occurrence) and none to
“random” incidental ones. In that case, there is anoptimal
density for the graph that contains mostly regular nodes. Note
that this optimal density depends on the scenario.

We do not imply here that random incidental contacts are
not useful to the routing process. A random (unpredicted)
contact with a node that, e.g., has higher betweenness or be-
longs to the destination’s community can be a very fortuitous
event (analogous to the “strength of weak ties” [22]) that a
good routing algorithm should seek to exploit. What we do
argue for is that the social graph on which such betweenness
and communities are calculated should mostly comprise edges
corresponding to real, “regular” relationships between vertices.

Let us define acontactas the period of time during which
two nodes are able to communicate and assume that time is
slotted4. Let us further denote the ordered sequence of contacts
from time 0 to time n asC0,n. We can define an aggregation
mappingf at timen as

f : C0,n 7−→ Gn(V, En).

Gn is the output social graph at timen, consisting of all
network nodesV , and a subset of edgesEn, among the set
of all possible node pairs in the edge setE of the complete
graph. We argue that a more useful and robust approach than
time-based aggregation, would be to choose the aggregation
function such that the resulting social graph has a given
density. We define the densityd of the aggregated graphGn as
the fraction of aggregated edges,|En|, over all possible edges
(i.e., all pairs of nodes)|E| = V ·(V −1)

2

d(Gn) =
|En|

|E|
.

If we want to operate the social graph at a certain density, say,
d(Gn) = 0.2, we choose the “best” edges, according to some
criterion, such thatEn will have the desired cardinality. Next,
we discuss two methods of picking the edges to fill the graph.

4We consider that each contact lasts one time slot and all messages can
be transmitted during this slot as bandwidth issues and contact duration are
mostly orthogonal to the type of issues we attempt to expose here. Although
contact duration has been proposed as an indicator of link strength, we choose
to not consider it here, for simplicity.

• Most Recent Contacts (MR): In many scenarios, it is
reasonable to assume that very old contacts may not
have the same predictive power as more recent ones (see
e.g., [8]). In that case, each edge{u, v} in the graph is la-
beled with the last time of appearance, timestampt{u,v}.
Further, a time variabletoldest,n is maintained that keeps
track of the oldest edge inGn. For all contacts{u, v}
included in the graph, it holds thatt{u,v} > toldest,n

5.
• Most Frequent Contacts (MF): Another option is to

aggregate only the set of most frequent contacts inEn,
since a more frequent contact might reflect a stronger
social link. We now maintain, for each pair of nodes, a
counterc{u,v} indicating how often a contact was seen
in the past. Further, the least frequent contact ID inEn

and the respective number of times it was seencleast,n is
maintained. If a contact{u, v} not included in the graph
is observed frequently enough such thatc{u,v} > cleast,n,
then this new edge is included and the least frequent is
deleted (to maintain the chosen density).

It is important to note that a large number of different and
more sophisticated mappings are possible, such as weighted
graphs [23]. Our goal here is not to derive an optimal ag-
gregation function, but rather to demonstrate, that even with
simple aggregation functions, one can considerably influence
the performance of DTN routing schemes that utilize complex
network analysis.

III. PERFORMANCESENSITIVITY TO AGGREGATION

We first analyze the dependence of performance of CNA-
based DTN routing schemes on the parameters of the aggre-
gation mapping (i.e., mapping function and density). Since
it is not clear how todirectly assess the quality of the
aggregated social graph, we do so indirectly, by extensively
simulating different routing schemes with different aggregation
parameters.

A. Network Scenarios

We consider different network scenarios by using five con-
tact generators, two of which are synthetic contact processes
and three are real mobility traces. The results from these sim-
ulations give strong empirical evidence that our conjecture –
that performance heavily depends on how well the underlying
network structure is captured by the aggregation – holds fora
wide range of different network scenarios.

Synthetic contact processes.Our assumption is that, in
most networks of interest, there is some social structure
between the participating nodes, often modeled as a graph
or complex network. In our scenarios, this graph governs the
probability of two nodes coming into contact at any time,
regardless of the actual mobility model underlying the process
(see [24] for an example of a mobility model with a social
overlay). As it has been consistently observed (e.g., [25]),
such social graphs often exhibitsmall-world behavior. Our
two synthetic models described below aim to capture this. The

5Notice that this scheme is similar to the Sliding Time Window, with the
difference that the window is now defined directly in the number of past
contacts. Although the same question remains, “how to choose the right
window value”, we believe that the density-based approach offers a more
flexible (and natural) way to answer this. Hence, throughoutthe rest of the
paper, we consider MR equivalent to sliding time window.



MIT INFO ETH
Scale and 97 campus stud- 41 conference 20 lab stud-
context ents and staff participants ents and staff
Period 9 months 3 days 5 days
Periodicity 300s (Bluetooth) 120s (Bluetooth) 0.5s (WiFi)
# Contacts

Total 100
′
000 22

′
459 23

′
000

Per dev. 1
′
030 547 1

′
150

TABLE I
REAL MOBILITY TRACES CHARACTERISTICS.

small worldprocess (SW) is inspired by the Watts and Strogatz
small world graph model [25]. We number allN nodes se-
quentially, conceptually arranging them to a ring, and let them
have “strong” links tok of their neighbors, i.e.friends(e.g., for
k = 4, node5 has strong link to nodes3, 4, 6 and 7). Then,
each of these links isrewired with probability p to random
nodes outside of thek neighbors to modelfamiliar strangers.
The resulting graph has strongly connected neighbors, as well
as shortcutsthat capture the small world characteristic [25].
Finally, to generate the sequence of contacts, we select the
first node uniformly at random; with probability1 − q, we
select the peer uniformly at random from the set of its strong
links (friends and familiar strangers) and with probabilityq,
we select its from the set of all nodes (random contacts).

Thecavemanprocess (CAVE ) is similar to the SW process,
with a different underlying graph model [25]. TheN nodes of
the network are grouped in cliques (caves) of sizek (i.e.,k−1
neighbors). Thus, unlike the SW model where communities are
overlapping, here communities are distinct. Rewiring of some
links is used again to create shortcuts, and the next contactis
picked among all graph edges similar to the SW model.6

Real mobility traces.The MIT Reality Mining[26] (MIT ),
the iMotes Infocom 2005 (INFO ) [3], and the ETH [27]
(ETH ) traces, spanning different network and mobile environ-
ments, are used to further support our analysis and findings.
Their characteristics are summarized in Table I. Note that in
the MIT trace, despite its long duration, a lot of short contacts
were supposedly not logged due to its time granularity of5
minutes. For our simulations we cut the trace at both ends and
used100′000 contacts reported between September 2004 and
March 2005. Note that this time period contains holidays and
semester breaks and thus still captures varying user behavior.
The ETH trace contains more than23′000 reported contacts
and is unique in terms of time granularity and reliability.
Although its mesurement period spans a considerably shorter
time than MIT, we have on average more than 1000 reported
contacts per device. This is roughly the number of contacts
per device we also have for the MIT trace.

For all three traces, we ignore logged timing information
and just order the reported contacts according to their start
times (i.e., slotted contacts).

B. Performance at Different Aggregation Densities

We vary the density parameter to investigate how sensitive
these protocols are to different aggregations. Using themost

6Note that for both SW and CAVE, draws are with replacement meaning
that an existing contact can be picked again. For both synthetic processes, we
set the parameters tok = 10, p = 0.1 andq = 0.5, to match the properties
of the contact traces.N = 100 in both scenarios.

frequentand themost recentaggregation mappings discussed
in Section II, we fix the density to values between 0 and
1 (in steps of 0.01). For the density under evaluation, each
node creates a message for each other node (i.e.,|E| mes-
sages). We check how many messages are delivered before
the expiry of an empirically determined TTL, chosen such
that we get delivery ratios larger than0.5 for the respective
networks7. Simulations with different TTLs give qualitatively
similar results. As a performance measure, we compute the
delivery ratio (DR) of SimBet and Bubble Rap8, relative to
Direct Transmission(performance factor thereafter), where the
source keeps the message until it meets the destination. Direct
Transmission serves as a lower bound on delivery ratio, any
smarter scheme should outperform it.

Figures 2(a) and 2(b) show the performance factor of Bubble
Rap with SW and CAVE (averaged over 10 simulation runs),
and SimBet with ETH and MIT contacts (averaged over 10
different starting times in the trace, at which the messagesare
created). The first thing to note is that for aggregation densities
close to0 or 1 (i.e., the graph is either empty or complete)
the performance factors are1, that is, the performance is the
same as for direct transmission. This has direct implications
for the growing time window aggregation, especially if the
graph gets complete quickly (see Figure 1). Note that for the
MIT contacts, the graph only reaches a density of about0.4
during the trace duration. We believe that this is due to the
large time granularity, which potentially does not capturemany
short random co-locations.

For SW, CAVE and MIT, we observe clear performance
peaks at small densities (around0.1) and clear performance
drops at densities of about0.2 and higher. For the INFO trace
(not shown in the figures) and for ETH, the performance peak
is a bit less pointy and at a higher density of around0.4 for
ETH (around0.65 for INFO). We suspect the reason for this
is that both traces are smaller than MIT in terms of nodes and
geographical extent.

Table II summarizes the results of all combinations of the
two protocols with the two mapping functions and with the
five contact processes, in terms of density at which the peak
performance occurs and height of the peak performance factor.
One important observation from the table is that the peak
densities differ from scenario to scenario, but are consistent
within a scenario (e.g., peak densities for SW are all along
the same value).This indicates that the optimal point of
aggregation does not depend on the forwarding metric, but
rather on the contact process.One exception is the ETH trace,
where the peak density for SimBet with MR mapping is at a
quite smaller value. One might deduce from this that the few
very recent contacts have much more predictive power than
slightly older ones. We plan to investigate this further in future
work.

Another observation from the table is, that the performance
peaks of SimBet and Bubble Rap are of similar height within
a scenario. However, the peak height differs from scenario to

7The TTL values are 2000 for CAVE and SW. 5000 for MIT, 1500 for
INFO and 250 for ETH

8We use a slight modification of the Bubble Rap protocol: In order to
compare it to SimBet, we operate Bubble Rap as a single-copy instead of a
multi-copy protocol.



(a) Bubble Rap DR performance increase (b) SimBet DR performance increase (c) SimBet Delivery Delay (CAVE)

Fig. 2. Delivered messages and delivery delay for SimBet/Bubble Rap vs. Direct Transmission.

Protocol SW CAVE MIT ETH INFO
SimBet MF .09/4.3 .09/3.3 .03/1.8 .43/1.6 .64/1.3

SimBet MR .09/3.7 .12/3.5 .09/2.1 .02/1.5 .71/1.4

Bubble MF .08/4.2 .09/4.5 .08/2.5 .44/1.5 .67/1.4

Bubble MR .09/3.3 .09/3.9 .14/2.5 .33/1.4 .67/1.4

TABLE II
OPTIMAL AGGREGATION DENSITIES. THE FIRST NUMBER IS THE DENSITY,

THE SECOND NUMBER IS THE PERFORMANCE INCREASE FACTOR. MF =
MOST FREQUENT, MR = MOST RECENT.

scenario. This indicates that different networks show different
degrees of structure, which the routing protocols can use to
increase their performance compared to direct transmission.
Also, the peak heights depend on the TTL we set for the
messages. Our analysis shows that higher TTL flattens the
peaks, since the larger delay of direct transmission in that
case is reflected to a lesser degree in the performance factor.
In order to have results independent of TTL, we analyzed
the delivery delay. Figure 2(c) shows results for SimBet with
CAVE contacts. It shows similar properties, i.e., low delays
compared to the baseline, at only a narrow range of small
densities.

We have also evaluated the protocols’ CNA components
(i.e., similarity, community detection, centrality) individually,
with respect to graph density, and observed similar sensitivity
to density. We omit these plots due to space limitations.

IV. I NFERRING THEOPTIMAL AGGREGATIONDENSITY

USING AN ONLINE ALGORITHM

There is clearly an optimal density (or rather a narrow
range of densities) for the aggregated social graph, outside of
which the performance of CNA-based DTN routing protocols
significantly degrades. Although density-based aggregation
can directly operate the social graph around a given density
point, an interesting question arises:How can nodes find an
optimal aggregation density in real time, without any prior
knowledge (e.g., mobility context) and using local information
only, to optimize their performance?

We conjecture that this optimal density lies at the point
where the underlying (social) structure guiding mobility best
correlates with the social structure that can be observed on
the aggregated contact graph. In other words, a strong “re-
lationship” in the contact process (e.g., a community/regular
link in SW or CAVE) should also be an observable relationship
(edge) in the aggregated graph; at the same time, the number of

additional graph edges (e.g., random links) should be as fewas
possible, as these will most probably be the result of incidental
past meetings. There is solid evidence that real life mobility
is predominantly small-world, with salient features such as
communities [16] and a high clustering coefficient [28], even
though the exactactual structure is still to be investigated
further. We hence believe that the above observation is accurate
for the mobility traces as well, something that is further
supported by our trace-related results.

The goal of this section is to devise an algorithm that
observes the aggregated social graphonline (i.e., as new
contacts arrive), and tries to assess the density at which this
graph has a structure that best reflects the above intuition about
connectivity/contactpatterns. This is a difficultunsupervised
learning problem. We first give hints on how to tackle this
problem through an analytical treatment of the CAVE model.
Then, we propose two clustering-related methods of identify-
ing distinguishable similarity patterns: one based on spectral
graph theory [19] and the other based on established methods
of evaluating the quality of graph partitioning [29]. Both can
be used at the core of our algorithm. Eventually, we evaluate
the performance of the DTN routing protocols operating with
a graph obtained from our online algorithm, and show that
they perform as well as with the optimal density found in
Section III (see Table II).

A. Optimal community structure of the social graph

One way to distinguish regular neighbors from random
neighbors is by their similarity values.Each node will see a set
of nodes to which it is highly similar (i.e., many shared regular
neighbors in the graph) and another set of nodes to which
it is less similar (i.e., random neighbors).Our problem can
now be cast as maximizing the similarity to regular neighbors,
while minimizing the similarity to random ones. In order to
motivate this approach, we use the CAVE model (without
rewiring, see also Section III), to derive the expected number
of regular neighbors and the expected number of random
neighbors of a node in the aggregated graph. From these, we
get the expected values of similarity that would be observed
online, as a function of time. Note that the same methodology
can be applied to CAVEwith rewiring and to the SW model.

Expected Number of Regular Links: Let nreg(c) denote
the number ofregular links of a node in the aggregated social
graph, afterc contacts with other nodes. Then, the expected



(a) # Links vs. # Contacts (b) Similarity vs. # Contacts

Fig. 3. Number of links and similarity values as a function oftime.

number of regular links is:

E[nreg(c)] = (k − 1) ·

(

1 −

(

1 −
1 − q

k − 1

)c)

. (1)

1 − q is the probability that the contact is regular – see
Section III – and there arek − 1 regular links for a node,
thus, the probability of a contact to be a specific nodeu is
1−q

k−1 . The probability that we observe at least one contact to
u is one minus the probability that we do not see the node,

thus, 1 −
(

1 − 1−q
k−1

)c

. This is valid for each of thek − 1

nodes independently, so, the expected number of filled regular
links after c contacts is given by Eq. 1. Clearly, this number
is bounded above byk − 1.

Expected Number of Random Links: The same way we
can easily derive the expected number of random links of a
node afterc contacts,E[nrnd(c)], as

E[nrnd(c)] = (N − k) ·

(

1 −

(

1 −
q

N − k

)c)

. (2)

In Figure 3(a), we plot the expected number of regular,
random, and total links as a function of contacts seen by a
specific node (this is an implicit measure of time as well)
for the parametersN = 100, k = 10, q = 0.1. This figure
shows that the point when all (or most) regular links are
in the graph is reached quickly. In this scenario, this is
the right point to stop the aggregation and fix the density.
After that point, only random links are added to the graph.
These have little predictive value and erroneously increase
nodes’ similarity. Next, we derive expected similarity values
explicitly. Denote the similarity of a nodeu to an encountered
nodev assim(u, v) = |N(u)∩N(v)|, whereN(u) is the set
of neighbors of nodeu.

Expected Similarity of Regular Neighbors: Let
E[simreg(c)] denote the expected similarity (number of
common neighbors) of a nodeu to a regular neighborv, after
it has experiencedc contacts with other nodes. Such common
neighbors can be from: (i) thek − 2 remaining nodes of their
community, or (ii), theN −k nodes of all other communities.
We denote the respective numbers asE[simreg−reg(c)] and
E[simreg−rnd(c)].

E[simreg(c)] = E[simreg−reg(c)] + E[simreg−rnd(c)]. (3)

Each of the remainingk−2 nodes of the respective community
are independently of each other in the neighbor set ofu and
v, thus,

E[simreg−reg(c)] = (k − 2) ·

(

1 −

(

1 −
1 − q

k − 1

)c)2

. (4)

This similarity quantity has predictive value, as the existence
of the edges accounted for in it, implies that a future contact
between the vertices at the ends of each of these edges is quite
probable.

The expected number of commonrandomcontacts is

E[simreg−rnd(c)] = (N − k)

(

1 −

(

1 −
q

N − k

)c)2

. (5)

Expected Similarity of Random Neighbors:If u andv are
not in the same community, we have to distinguish the follow-
ing two cases: (i) random contacts of nodev happen to occur
with regular neighbors of nodeu and vice versa; we denote the
number of such common neighbors asE[simrnd−reg(c)]; (ii)
random contacts of nodeu happen to coincide with random
contacts of nodev, denoted asE[simrnd−rnd(c)]. Then,

E[simrnd−reg(c)] =

2(k − 1)

(

1 −

(

1 −
1 − q

k − 1

)c) (

1 −

(

1 −
q

N − k

)c)

,

and,

E[simrnd−rnd(c)] = (N − 2k)

(

1 −

(

1 −
q

N − 2k

)c)2

.

In total, the expected similarity of random neighbors is

E[simrnd(c)] = E[simrnd−reg(c)]+E[simrnd−rnd(c)]. (6)

This similarity quantity has little predictive value, as it
accounts for incidental contacts that do not imply anything
about the same contact re-occurring.

To maximize the predictive capacity of the aggregated graph
we want to maximizeE[simreg(c)], while at the same time
minimizing E[simrnd(c)]. In practice, nodes do not have any
a priori knowledge about community membership and size, or
the total number of nodes. Thus, it is more sensible to use
normalized similarities and divide similarities by the expected
node degreeE[nreg(c)] + E[nrnd(c)]. Consequently, in order
for our algorithm to automatically adjust the aggregation
window to the optimal aggregation density, it seems reasonable
to solve the following maximization problem:

maximize
c

(

E[simreg(c)] − E[simrnd(c)]

E[nreg(c)] + E[nrnd(c)]

)

. (7)

Figure 3(b) depicts the normalized similarities and their
difference. It is clear from this plot, that the difference is
maximized around the point where enough contacts per node
have occurred to fill in most regular links, but only few
random links have been instantiated. We will show later that
this maximum correlates well with the aggregation density at
which the performance of SimBet and Bubble Rap is optimal
(see Section III).

Nevertheless, regular similarityE[simreg(c)] is not directly
observable without knowing which links are regular and which
are not. In fact, in order to apply this maximization, nodes
need to first be able to distinguish between these two classes
of links. When a node encounters another, it only knows
and logs down its similarity value to this node. Out of the
contacts observed over time, it can create a histogram of
similarity values observed. One way to assign “labels” to



(a) Algebraic Connectivity (Models) (b) Algebraic Connectivity (Traces) (c) Q Function (Traces)

Fig. 4. Modularity metrics of similarity values depending on the density of the aggregated graph.

each past contact (“regular” vs. “random”) is to perform
clustering on the set of normalized similarity values. If the
aggregated density is appropriate, a2-means[18] algorithm
should produce two clusters ofsimilar normalized similarity
values, one for similar regular nodes and another for similar
random nodes. Note, however, that at low (close to 0) and high
densities (close to 1) only one cluster appears since all nodes
havesimilar similarities close to 0 (no similarity) and 1 (all
nodes similar), respectively. Eq. (7) then becomes equivalent
to maximizing the distance between the two cluster centroids
of low and high densities.

B. Robust Clustering of Similarity Values

Although the above discussion provides useful intuition, in
practice, the structure guiding mobility (and thus contacts)
cannot be captured in a straightforward way using the 2-means
clustering approach based on normalized similarity. First, as
explained earlier, there might not be 2 clear cluster centers at
low and high densities, in which case the result returned by the
simple 2-means approach is unreliable. Second, the real world
traces, albeit sharing basic structure with the synthetic models,
exhibit more heterogeneity: nodes might belong to more
than one community, degree distributions might be skewed,
communities might be overlapping, and the line between
regular and random contacts becomes blurred. As a result, the
two classes of similarities might not be easily distinguishable
even around the “right” aggregation point. Thus, the simple
clustering algorithm sketched above, based only on cluster
center distance, might draw deceiving conclusions.

To cope with the difficulty of identifying a contact as
random or regular, we use two approaches to assess how
distinguishable the two clusters returned by the clustering
algorithm are. One isspectral analysisof a pre-processed
similarity matrix and the study of the matrix’algebraic
connectivity [19]. The second is theQ function of cluster
modularity that has been found to correlate with cluster quality
in many examples [29].

Spectral Analysis: Let us assume that a nodeu has
collected a set ofn contactsci (i = 1 . . . n) during a time
period (according to one of the methods in Section II). Node
u uses these contacts to build its view of the social graph. Each
contactci observed is assigned a real numbersi measuring the

normalized similaritybetweenu and the node encounteredv:

si =
|N(u) ∩ N(v)|

min{|N(u)|, |N(v)|}
(si ∈ [0, 1]), (8)

whereN(x) is the set of neighbors of nodex in the aggregated
social graph. In other words, each node has now a vectorsof n
real-valued entries in[0, 1] representing the various similarity
values observed thus far. According to the previous discussion,
when the right amount of contacts (n) has been observed, the
values in this vector should cluster around small and high
values.

In order to formally measure this spectral clustering [19]
converts the vectors into ann × n affinity matrixW.

W = {wij}, (9)

wij = exp(−
‖si − sj‖

2

2σ2
), if i 6= j , andwii = 1,

with σ ∈ [0, 1] (threshold value).
Let us further define theLaplacianof W as

L = I − D− 1

2 WD− 1

2 , (10)

where I is the identity matrix andD is the diagonal matrix
whose (i,i)-elementdii =

∑

j wij (i.e., is thedegreeof vertexi
on the matrixW). Spectral Graph Theorystudies the structural
properties and invariants of the weighted graph defined byW,
using eigenvalue decomposition of the LaplacianL . Spectral
clustering uses this theory to identifyk strongly connected
components inW with few weak links between them, by
projecting then points into the eigenspace ofL consisting
of L’s first k eigenvectors. In fact, spectral clustering methods
solve a relaxation of thenormalized cutproblem (a known NP-
hard problem), which is a min cut problem under the constraint
that the two cut-sets are balanced.

In the ideal case whereW is block-diagonal, that is,
it consists ofk connected components with all weights 0
between blocks, the eigenvaluesλi, i = 1 . . . n of L are:

λ1 = · · · = λk = 0 < λk+1 · · · ≤ λn. (11)

This means, it has exactlyk eigenvalues equal to0, and all
other eigenvalues bounded away from and larger than0. In that
case, spectral clustering algorithms are guaranteed to identify
clusters correctly even when they form non-convex (non-
linearly separable) regions. In the non-ideal case,W is not



(a) Bubble Rap with CAVE contact trace. (b) SimBet with ETH contact trace. (c) Density chosen by the adaptive algorithm.

Fig. 5. SimBet and Bubble Rap performance with different aggregation functions compared to direct transmission.

block diagonal (i.e., is connected with lower weights between
clusters), and only the first eigenvalue ofL is 0. Nevertheless,
matrix perturbation theory [30] suggests that if the clusters
are compact and modular (in other words, identifiable by a
human), the eigenvalues corresponding to these clusters will
still be small.

This is the basis of our algorithm. We expect to see either
of two things: Either two separable (even if noisy) similarity-
value clusters in the optimal density range, or only one (or two
non-easily separable ones) if density is too high or too low.Our
algorithm then seeks to locally minimize the second eigenvalue
λ2 of the Laplacian (known as theAlgebraic Connecitivty) of
the similarity vectors observed over time.

Modularity Function Q: A different approach often used
for evaluating community structure in complex networks is the
use of an appropriatemodularity function Q [29]:

Q(Pk) =

k
∑

c=1

[

A(Vc, Vc)

A(V, V )
−

(

A(Vc, V )

A(V, V )

)2
]

, (12)

wherePk is a partition of the vertices intok groups and where
A(V

′

, V
′′

) =
∑

i∈V
′
,j∈V

′′ wij , with W = {wij} defined as
above. This function attempts to evaluate a particular graph
partitioning by measuring the ratios of intra-community links
to inter-community links. The more the intra-community link
occurrence diverges from what one would expect for a random
network, the more clearly separable the communities, and the
higher the value of Q.

Although the modularity function approach and the spectral
clustering approach are not completely different (in fact,
spectral methods can be used to maximize Q [31]), these have
particular strengths and weaknesses (as we have also observed
for our datasets), as well as differences in implementation
overhead. For this reason, we are going to present results for
both approaches and compare their performance in various
scenarios.

Online optimal density tracking algorithm: The idea is
to find the density at which theAlgebraic Connectivityof
observed similarity values is minimal, or alternatively, the Q
function is maximal. While collecting and loggingn contacts9,

9We set the update intervaln empirically to 100 contacts, as a tradeoff
between having enough similarity samples, and reacting sufficiently fast to
changes in the network.

Protocol SW CAVE MIT ETH INFO
SimBet MF 4.1/3.3 3.0/3.0 1.8/1.7 1.5/1.5 1.2/1.2

SimBet MR 3.6/3.2 2.8/2.5 2.1/2.0 1.4/1.5 1.3/1.2

Bubble MF 2.9/2.7 3.6/3.8 2.1/1.7 1.5/1.5 1.3/1.2

Bubble MR 3.2/3.3 3.4/3.2 1.8/1.3 1.4/1.4 1.1/1.2

TABLE III
PERFORMANCE FACTORS USING THE DENSITY ADAPTION ALGORITHM.
THE FIRST NUMBER IS FOR ALGEBRAIC CONNECTIVITY, THE SECOND

NUMBER FOR THE MOSTQ MODULARITY.

we compute similarity values, using the aggregated graph at
different densities. Aftern contacts, we use these similarities
to determine the gradient of the Algebraic Connectivity (or
Q Function) and adapt the density of operation accordingly,
towards the optimum. In order not to get stuck in local
extrema, we use occasional random lookaheads.

C. Performance Evaluation

Using this simple tracking algorithm, we evaluate how
close we get to the optimal performance (see Section III).
Figure 5(a) shows the cumulative number of messages Bubble
Rap delivers, when we create messages between random
sender and destination throughout the simulation. We choose
the density with the online algorithm using the Algebraic
Connectivity metric, and compare it to the original offline
algorithm with growing time window and to direct transmis-
sion. We observe that after a short initial period, the growing
time window graph becomes too dense to be useful, and the
performance degrades compared to that of direct transmission
(i.e., the two lines are parallel). On the other hand, our
online algorithm keeps the good performance throughout the
simulation with both – the most recent and most frequent –
mappings. Most frequent performs a bit better in this case, as
community links are more frequent than random ones in the
CAVE model by design.

A similar result is shown in Figure 5(b), where we use
SimBet and the ETH trace with the same simulation setup.
However, in this case the performance increase is a bit smaller,
since the trace is less structured, as reported in Section III.
Figure 5(c) shows the evolution of the chosen density by
our online algorithm in the course of trace time (MIT). Our
algorithm moves around a density of0.09, which indeed
coincides with the best performance benefit calculated offline



(cf. Table II). We note here that, in the case of the traces,
we have also observed some small variance in the density
value that achieves the best performance at different time slices
of the trace, indicating some non-stationarity in the process.
Nonetheless, our online algorithm seems to be capable, in most
cases, to track a close to optimal density value. We intend to
look deeper into such trace properties in future work.

Table III summarizes the performance factor for all com-
binations of protocols, aggregation functions, and contact
processes. Most values are close to the ones of Section III.
In some cases, for instance SimBet with the MIT trace,
we even reach the reported optimal values. Note also, that
the performance of the Algebraic Connectivity and the Q
Function versions are very similar. In some cases, Algebraic
Connectivity is slightly better. However, the computationof
the Q values is significantly less complex (i.e., less similarity
preprocessing). The choice between the two is thus a tradeoff
between complexity and a slightly better performance.

V. CONCLUSIONS

In this paper, we have established the predominant impor-
tance of efficient mappings of mobility contacts to an ag-
gregated social graph, which DTN algorithms using complex
network analysis (CNA), can utilize to optimize forwarding
decisions. Specifically, this aggregated social graph exhibits
an optimal density where it best reflects the underlying social
mobility and where performance benefits are maximized.
Contrary to this, specific metrics and algorithms (e.g., forcom-
munity detection, etc.) used by different CNA-based schemes
seem to have a less prominent effect on performance. Finally,
by mapping the problem to that of unsupervised clustering
of observed node similarity values (online), we have shown
that methods based on algebraic connectivity and cluster
modularity can capture this optimal point in a robust manner
both for synthetic models and real world traces. Using an
algorithm based on these methods we can track this optimal
point and achieve closed to offline performance, without prior
knowledge. We believe that our preliminary findings and
proposed solutions have a wider applicability for a large range
of DTN data dissemination protocols based on social networks.

In future work, we intend to look deeper into the vari-
ous traces, as well as into the connectivity graphs resulting
from state-of-the-art, trace-based mobility models (e.g., [28]),
in order to better understand their underlying structure and
similarities. We intend to use both traditional graph metrics
(e.g., degree distribution, etc.) as well as spectral graph
theory to uncover interesting invariants. Furthermore, weare
interested in exploring more sophisticated mappings, e.g.,
appropriate weighted graphs, as these can potentially capture
more information and spectral methods are still applicable.
Finally, we are interested in the scaling behavior of such CNA-
based approaches. Specifically, although these schemes have
demonstrated some performance benefits, we would like to
investigate the navigability properties of the respectivecontact
graphs, and more importantly, whether these properties can
indeed result in efficient and scalable DTN routing solutions
as network size increases.
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