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Abstract—Delay Tolerant Networks (DTN) are networks of
self-organizing wireless nodes, where end-to-end connedty
is intermittent. In these networks, forwarding decisions ae
generally made using locally collected knowledge about ned
behavior (e.g., past contacts between nodes) to predict fuie
contact opportunities. The use of complex network analysifias
been recently suggested to perform this prediction task and
improve the performance of DTN routing. Contacts seen in the
past are aggregated to asocial graph, and a variety of metrics
(e.g., centrality and similarity) or algorithms (e.g., community
detection) have been proposed to assess the utility of a notie
deliver a content or bring it closer to the destination.

In this paper, we argue that it is not so much the choice
or sophistication of social metrics and algorithms that bees
the most weight on performance, but rather themapping from
the mobility process generating contacts to the aggregatesbcial
graph. We first study two well-known DTN routing algorithms
— SimBet and BubbleRap — that rely on such complex network
analysis, and show that their performance heavily dependsro
how the mapping (contact aggregation) is performed. What is
more, for a range of synthetic mobility models and real tracs,
we show that improved performances (up to a factor of 4 in
terms of delivery ratio) are consistently achieved for a rehtively
narrow range of aggregation levels only, where the aggregat
graph most closely reflects the underlying mobility structue.
To this end, we propose an online algorithm that uses concept
from unsupervised learning and spectral graph theory to inkr
this “correct” graph structure; this algorithm allows each node
to locally identify and adjust to the optimal operating point, and
achieves good performance in all scenarios considered.

|I. INTRODUCTION

are more likely to deliver content or bring it closer to the
destination [7].

Among them, a number of schemes implicitly assess the
strength of (“social”) ties between nodes. For example E&wu
time of last encounter, and [9] uses contact frequency asta hi
on thesimilarity of mobility patterns. [10], [11] use instead a
metric much akin todegree centralityto identify nodes that
are highly mobile/social; the former scheme is reminiscent
of search in scale-free networks [12], while the latter uses
centrality to choose which relays to “spray” a limited butigie
message replicas to. However, these simple metrics may only
capture one facet of the underlying mobility process, which
can hinder good contact predictions.

Complex network analysis [13] (CNA) has recently been
proposed as a more generic and powerful tool to formulate
and solve the problem of future contact prediction in DTNSs.
Past observed contacts between nodesaggregatedinto a
social graph, with graph edges representing (one or more)
past meetings between the vertices. An edge in this graph
conveys the information that two nodes often encounter each
other either because they have a strong socialftiends,
or because they are frequently co-located without actually
knowing each otherfé@miliar stranger3; thus, existence of an
edge intends to have predictive capacity for future costact

Two recently proposed routing protocols, SimBet and Bub-
bleRap [14], [15], make explicit use of CNA metrics and algo-
rithms in order to highlight a node’s position in the aggtega
social graph, and assess its utility to act as a relay for agess

The Delay Tolerant Networking (DTN) paradigm has beetiestined to other nodes in the graph. Although the detailed
proposed to support emerging wireless networking applicaechanisms of the two protocols differ (see next Section),
tions, where end-to-end connectivity cannot be assumed they are both based on the same principles: they assume
technical reasons (e.g., propagation phenomena, and nede that nodes naturally reside in mobility-related commusiti

bility) or economical reasons (e.g., lack of infrastruetuow
power nodes) [1], [2], [3]. To cope with thispportunisticor

(e.g., class, work, home). Increasingly “central” or “well
connected” nodes in the graph are then chosen as carriers to

mobility-assistedouting algorithms have been proposed [4]elay content over different communities, until a node that
[5]: messages are forwarded one hop at a time, only when tefeares many neighbors with the destination [14], (i.e ogs
nodes are ircontact(i.e., move within transmission range)to the destination’s community [15], [16]) is reached. Tes

without full or any knowledge of future contact opportuesj

protocols have been reported to often outperform well-kmow

a forwarding decision normally aims to simply increase th®TN routing schemes that are not explicitly “social”.

delivery probability at every step.

Nevertheless, it is not well understood undehat con-

To combat the inherent uncertainty of future contact oppadlitions these protocols and their individual components ca

tunities, many protocols forward in parallel multiple riepk

achieve the suggested performance, nor isvtity. What is

of the same content [6] or resort to coding (network codingore, it is actually not (just) the choice or sophisticatimin
erasure coding). Nevertheless, node mobility (and regultisocial metrics or algorithms that bears the most weight on
contact opportunities) are not entirely random. Insteaglkv performance, but rathéhe mapping from the mobility process

or strong patterns are present. To this end, numeudility-

generating contacts to the aggregated social grafthis

based routing schemes attempt to differentiate nodes thatapping presents a tradeoff, where some information about



timing of contacts is lost As a simple example, one could OOOOQO
create a link if at least one contact has occurred in the past O

between the two nodes [14], but this would result in an overly © o—0O

dense graph, after a certain network lifetime. Meaningful O

differentiation between nodes using complex network asialy O O

will not be possible. Hence, the social graph created out of O

past contacts should bestflect the underlying (mobility or (a) t=1h. (b) t=2h.

social) structure generating these contacts, so that ncates
be meaningfully differentiated and edges have predictaree:

In this paper, we demonstrate that CNA-based DTN routing
can offer significant performance benefisly if applied to
social graphs exhibiting these properties. Furthermore, w
provide an efficient online algorithm to achieve this in a
distributed fashion. We summarize below our contributions

« We evaluate SimBet and BubbleRap under a range of (c) t=72h.
synthetic contact generation models (i.e., Small-World
and Caveman) and real mobility traces (i.e. MIT iMOteSFig' 1. Aggregated contacts for the ETH trace at differemietinstants.

Infocom, ETH). We show that good performance is d h b . d th
consistently achieved only for a relatively narrow rangB0des to carry the message between communities, and then

; ; imilarity to “home in” to the destination’s community.
of aggregation levels, where social graph structure cosefS€ SIM! -~ .
reflects the underlying mobility structure (Section 111),  Bubble Rap [15] uses a similar approach. Agdiajween-

« We investigate different methods to identify this optimal'®SS centralitys u_seo_l to find bridg_ing nodes u_n_til the content
operating point “on the fly". Specifically, we usaus- reaches the destination community. Communities here are ex

tering techniques [18] to identify desirable patterns iRliCitly identified by a community detection algorithm, tead
observed node similarities, and then use concepts fréthimPlicitly by using similarity. Once in the right commutyj
spectral graph theonf19] to maximize the modularity content is only forwarded to other nodes of that community: a
of such clusters, and compare the behavior of variolfgcal centralitymetric is used to find increasingly better relay
contact models under different aggregation methods afgdeswithin the community.

levels (Section IV). A Time Window Based A i
« We propose a distributed online algorithm that can adjust ime Wihdow Based Aggregation

its contact graph mapping to achieve optimal perfor- State-of-the-art algorithms tend to aggregate contadgyus
mance regardless of the mobility scenario or the specifi@ time window.
routing protocol usedSection V). « Growing Time Window: In the original SimBet [14],
As a final note, although we focus on unicast routing betweenness and similarity are calculated over a social
in this paper, we believe that the observations made and 9raph, where there is an edge between two nodes if there
methodology proposed are more widely applicable to most has beerat least onecontact between them any time

content dissemination algorithms for opportunistic netso in the past. ) o ) ) _
o Sliding Time Window: A limited time window is
Il. CONTACT AGGREGATION. PRELIMINARIES used for the two Centraliw value calculations in Bubble

_ ] ) Rap [15], where time is split into 6kime windows
In this section, we describe our two case study protocols, gng only contacts in the last 6h window form edges of
SimBet and Bubble Rap, in more detail, and formulate the the graph. Yet, this window length is only empirically

graph aggregation problem. determined.
X S
St'm]?ﬁ;[ [14] assesseﬂm!!{arltymit;t) detect nodest thlgt areCIearIy, for both SimBet and Bubble Rap (and CNA-based
%ar tF])‘ b‘?dS?‘me c((j)mmtuhnlty, a Id weenness cen raf Yo 4 proaches in general) to function properly, social stmest
iaentity bridging nodes, that could carry a message om Ofjwich grive node mobility, such as communities and bridges,

community to another. The decision to forward a messa st be correctly reflected in the social graph. We argue that

depends on the similarity and centrality values of the newpy; "o depends on the way this graph is constructed out
encountered node, relative to the current one: If the form f observed contact:gntact aggregation

_node has a higher simila_rity with the destination, the "8SSa  \We illustrate this using a real trace of contacts, colleeted
I(;Sefnotpévlarr?oe ddeto_ll_tf,]é)thggllvlisse, tg]eﬁgtesussgemsctg;smﬂ; thcaerrlr':r H (see Section Il and Table | for details about the trace).

' 9 gly elgure 1 shows that an aggregation over the whole history of
10ther, less compact representations sucAiase Expanded Graphid7] the network is problematic since the social graph gets more
have been proposed to include time-related information dyrsamic graph. and mor(_a meshed. As a consequeljce, hetemgene_'ty Qf the
However, considerable scalability issues quickly ariseome would essen- nodes, with respect to the above social network metricspis n
tially need to store a graph for every time instant in the past longer reflected after long network lifetime. The same holds
N avi'ﬁ?]"ig%n‘;‘ga‘"’(osggdeeg 'S[gglf)md as the number of neighboese nodes o 5gqregation in very short time windows. With nodes sliade
SBetweenness centrality of a node is defined as the fractishartest paths accord'ng to th.e'r_betweenness centralities, we see thetaf
between each possible pair of nodes going through this remied.g., [21]). short network lifetime (e.g., after 1 hour) most nodes héaee t



same color since they did not have any contacts yet and thus Most Recent Contacts (MR) In many scenarios, it is
their betweenness centrality is not defined (the same holds f  reasonable to assume that very old contacts may not
similarity). After 2 hours, enough contacts have occured t  have the same predictive power as more recent ones (see
differentiate many nodes. However, after 72 hours of rugnin  e.g., [8]). In that case, each edfe, v} in the graphis la-
time, all nodes have seen each other and the nodes have beled with the last time of appearance, timestamp, ;.
again the same betweenness centrality (and similarity)atWh Further, a time variableygest, IS Maintained that keeps

is more, the time window values at which these transitions track of the oldest edge id,. For all contacts{u, v}
occur will differ from scenario to scenario. Consequeritlhis included in the graph, it holds that, ,, > t0|desm5.

easy to see that time window based aggregation can result t& Most Frequent Contacts (MF). Another option is to
forwarding decisions that degenerate to random, signifizan aggregate only the set of most frequent contact&in
affecting the performance of the two protocols, as we shall since a more frequent contact might reflect a stronger

see in Section lll. social link. We now maintain, for each pair of nodes, a
) . countercy, .y indicating how often a contact was seen
B. Density Based Aggregation in the past. Further, the least frequent contact IDFin

Both the choice of how many contacts and the choice of and the respective number of times it was segfy, is
which ones to include in the graph affect its quality. In orde ~ maintained. If a contacfu, v} not included in the graph
for our social graph to be useful for prediction, all edges is observed frequently enough such thgf ,, > cieastn,
included must correspond to “regular” contacts (whose past then this new edge is included and the least frequent is
occurrence is predictive of a future occurrence) and none to deleted (to maintain the chosen density).

‘random” incidental ones. In that case, there isaptimal |t js important to note that a large number of different and
density for the graph that contains mostly regular nodeseNanore sophisticated mappings are possible, such as weighted
that this optimal density depends on the scenario. graphs [23]. Our goal here is not to derive an optimal ag-

We donot imply here that random incidental contacts argregation function, but rather to demonstrate, that eveh wi
not useful to the routing process. A random (unpredictedinple aggregation functions, one can considerably inflaen

contact with a node that, e.g., has higher betweenness or g performance of DTN routing schemes that utilize complex
longs to the destination’s community can be a very fortuitohetwork analysis.

event (analogous to the “strength of weak ties” [22]) that a

good routing algorithm should seek to exploit. What we do !!l. PERFORMANCESENSITIVITY TO AGGREGATION

argue for is that the social graph on which such betweennesg\Ve first analyze the dependence of performance of CNA-

and communities are calculated should mostly comprisessdgmsed DTN routing schemes on the parameters of the aggre-

corresponding to real, “regular” relationships betweetices. gation mapping (i.e., mapping function and density). Since
Let us define aontactas the period of time during whichit is not clear how todirectly assess the quality of the

two nodes are able to communicate and assume that timeaggyregated social graph, we do so indirectly, by extengivel

slotted. Let us further denote the ordered sequence of contagisiulating different routing schemes with different aggrtion

from time 0 to timen asCy_,,. We can define an aggregatiorparameters.

mappingf at timen as
pping f n A. Network Scenarios

[ Cop — Gn(V, En). We consider different network scenarios by using five con-
G, is the output social graph at time, consisting of all tact generators, two of which are synthetic contact pr@asess

network nodes/, and a subset of edgds,, among the set and three are real mobility traces. The results from these si
of all possible node pairs in the edge getof the complete ulations give strong empirical evidence that our conjeztdr
graph. We argue that a more useful and robust approach tif3@t Performance heavily depends on how well the underlying
time-based aggregation, would be to choose the aggregalrﬂt%work structure is captured by the aggregation — holds for
function such that the resulting social graph has a givdde range of different network scenarios. .
density We define the density of the aggregated graphi, as ~ SYnthetic contact processesOur assumption is that, in
the fraction of aggregated edgeg,, |, over all possible edges MOSt networks of interest, there is some social structure

: : _ V(v-1 between the participating nodes, often modeled as a graph
(i-e., all pairs of nodes)e| = = or complex networkln our scenarios, this graph governs the
|E) ] probability of two nodes coming into contact at any time,
d(Gn) = |E| regardless of the actual mobility model underlying the pesc

, , , (see [24] for an example of a mobility model with a social
If we want to operate the social graph atacertam_densmy, SBverlay). As it has been consistently observed (e.g., [25])
d(Gn) = 0.2, we choose the “best” edges, according to SOm@ciy social graphs often exhitsmall-world behavior. Our

criterion, such thatZ, will have the desired cardinality. Next, yyyo synthetic models described below aim to capture thig. Th
we discuss two methods of picking the edges to fill the graph.

5Notice that this scheme is similar to the Sliding Time Windavith the

“We consider that each contact lasts one time slot and allagesscan difference that the window is now defined directly in the nemiof past

be transmitted during this slot as bandwidth issues andacbmluration are contacts. Although the same question remains, “how to @hdbe right

mostly orthogonal to the type of issues we attempt to expese. Although window value”, we believe that the density-based approaférsoa more

contact duration has been proposed as an indicator of liekgth, we choose flexible (and natural) way to answer this. Hence, throughbatrest of the
to not consider it here, for simplicity. paper, we consider MR equivalent to sliding time window.



| I MIT [ INFO [ ETH | : . .
frequentand themost recentaggregation mappings discussed
Scale and 97 campus stud-] 41 conference 20 lab stud- . . fix the d . | b 0 d
context ents and staff participants | ents and stafff  IN Section I, we fix the density to values between 0 an
Period 9 months 3 days 5 days 1 (in steps of 0.01). For the density under evaluation, each
Periodicity 300s (Bluetooth) | 120s (Bluetooth) 0.5s (WiFi) node creates a message for each other node |(E¢_mes_
#Tco?glt acts 100'000 29/459 23/000 sages). We check how many messages are delivered before
Per dev. 17030 547 1/150 the expiry of an empirically determined TTL, chosen such
that we get delivery ratios larger thdn5 for the respective
TABLE | networkg. Simulations with different TTLs give qualitatively

REAL MOBILITY TRACES CHARACTERISTICS similar results. As a performance measure, we compute the

delivery ratio (DR) of SimBet and Bubble Rprelative to
small worldprocess$W) is inspired by the Watts and StrogatDirect Transmissiorfperformance factor thereafter), where the
small world graph model [25]. We number al' nodes se- source keeps the message until it meets the destinatioectDir
guentially, conceptually arranging them to a ring, andlet  Transmission serves as a lower bound on delivery ratio, any
have “strong” links tdk of their neighbors, i.driends(e.qg., for smarter scheme should outperform it.
k = 4, node5 has strong link to node8, 4,6 and 7). Then, Figures 2(a) and 2(b) show the performance factor of Bubble
each of these links isewired with probability p to random Rap with SW and CAVE (averaged over 10 simulation runs),
nodes outside of thé neighbors to moddiamiliar strangers and SimBet with ETH and MIT contacts (averaged over 10
The resulting graph has strongly connected neighbors, 8s wdfferent starting times in the trace, at which the messages
as shortcutsthat capture the small world characteristic [25]created). The first thing to note is that for aggregation ilie:ss
Finally, to generate the sequence of contacts, we select these to0 or 1 (i.e., the graph is either empty or complete)
first node uniformly at random; with probability — ¢, we the performance factors aile that is, the performance is the
select the peer uniformly at random from the set of its stromame as for direct transmission. This has direct implicatio
links (friends and familiar stranger$ and with probabilityg, for the growing time window aggregation, especially if the
we select its from the set of all nodes (random contacts). graph gets complete quickly (see Figure 1). Note that for the
The cavemarprocess CAVE) is similar to the SW process, MIT contacts, the graph only reaches a density of attout
with a different underlying graph model [25]. THé nodes of during the trace duration. We believe that this is due to the
the network are grouped in cliques (caves) of difee.,k—1 large time granularity, which potentially does not captumamny
neighbors). Thus, unlike the SW model where communities askort random co-locations.
overlapping, here communities are distinct. Rewiring ahso  For SW, CAVE and MIT, we observe clear performance
links is used again to create shortcuts, and the next coistacpeaks at small densities (aroufd) and clear performance
picked among all graph edges similar to the SW md&del.  drops at densities of abo0t2 and higher. For the INFO trace
Real mobility traces. The MIT Reality Mining[26] (MIT ), (not shown in the figures) and for ETH, the performance peak
the iMotes Infocom 2005IKNFO) [3], and the ETH [27] is a bit less pointy and at a higher density of around for
(ETH) traces, spanning different network and mobile enviro=TH (around0.65 for INFO). We suspect the reason for this
ments, are used to further support our analysis and findingsthat both traces are smaller than MIT in terms of nodes and
Their characteristics are summarized in Table I. Note that geographical extent.
the MIT trace, despite its long duration, a lot of short cetda  Table Il summarizes the results of all combinations of the
were supposedly not logged due to its time granularitys of two protocols with the two mapping functions and with the
minutes. For our simulations we cut the trace at both ends aivé contact processes, in terms of density at which the peak
used100’000 contacts reported between September 2004 apérformance occurs and height of the peak performancerfacto
March 2005. Note that this time period contains holidays am@he important observation from the table is that the peak
semester breaks and thus still captures varying user l@haviensities differ from scenario to scenario, but are coastst
The ETH trace contains more th&3'000 reported contacts within a scenario (e.g., peak densities for SW are all along
and is unique in terms of time granularity and reliabilitythe same value)This indicates that the optimal point of
Although its mesurement period spans a considerably shorggregation does not depend on the forwarding metric, but
time than MIT, we have on average more than 1000 reportegther on the contact proces®ne exception is the ETH trace,
contacts per device. This is roughly the number of contaatthere the peak density for SimBet with MR mapping is at a
per device we also have for the MIT trace. quite smaller value. One might deduce from this that the few
For all three traces, we ignore logged timing informatiogery recent contacts have much more predictive power than
and just order the reported contacts according to theit stglightly older ones. We plan to investigate this furtherutufe
times (i.e., slotted contacts). work.
. . i Another observation from the table is, that the performance
B. Performance at Different Aggregation Densities peaks of SimBet and Bubble Rap are of similar height within
We vary the density parameter to investigate how sensitiaescenario. However, the peak height differs from scenario t
these protocols are to different aggregations. Usingntiost
“The TTL values are 2000 for CAVE and SW. 5000 for MIT, 1500 for
SNote that for both SW and CAVE, draws are with replacementnimga INFO and 250 for ETH
that an existing contact can be picked again. For both stintheocesses, we  8We use a slight modification of the Bubble Rap protocol: Ineortb

set the parameters to= 10, p = 0.1 andq = 0.5, to match the properties compare it to SimBet, we operate Bubble Rap as a single-aogtgad of a
of the contact tracesV = 100 in both scenarios. multi-copy protocol.
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Fig. 2. Delivered messages and delivery delay for SimBédf#firi Rap vs. Direct Transmission.

Protocol SW  CAVE MIT ETH  INFO " :
fotoco additional graph edges (e.g., random links) should be agsfew
SimBet MF .09/4.3 .09/3.3 .03/1.8 43/1.6 .64/1.3 ol i i * brobably be th it of irrch
SimBet MR .09/3.7 .12/3.5 .09/2.1 .02/1.5 .71/1.4 possible, as these will most probably be the result of intale
Bubble MF  .08/4.2 .09/45 .08/2.5 .44/15 .67/1.4 past meetings. There is solid evidence that real life miybili
Bubble MR  .09/3.3 .09/3.9 .14/2.5 .33/1.4 .67/1.4 is predomlnantly small-wprld, with '_sallent fga_tures such a
communities [16] and a high clustering coefficient [28], mve
o COREGATIO < TA‘zLTE I < s s though the exachctual structure is still to be investigated
PTIMAL A REGATION DENSITIE HE FIRST NUMBER IS THE DENSITY : : .
THE SECOND NUMBER IS THE PERFORMANCE INCREASE FACTOMF = further. We h_e_nce belleve that the above Observatlon ISateu
MOST FREQUENT MR = MOST RECENT for the mobility traces as well, something that is further

supported by our trace-related results.
The goal of this section is to devise an algorithm that

scenario. This indicates that different networks showeddfht . . :
querves the aggregated social grapfline (i.e., as new

degrees of structure, which the routing protocols can use : ) . ;
increase their performance compared to direct transnnissi8OntaCtS arrive), and iries to assess the denS|ty_at W.h'Sh th
Also, the peak heights depend on the TTL we set for ﬂ%’aph hz_;ts_astructure that best _reflects t_h.e above mtuihguta
messages. Our analysis shows that higher TTL flattens {rgnectivity/contacpatterns This is a difficultunsupervised
peaks, since the larger delay of direct transmission in thafnng problem. We f|rst.g|ve hints on how to tackle this
case is reflected to a lesser degree in the performance.fa leem through an analytlcal_treatment of the CAVE_mod_eI.
In order to have results independent of TTL, we analyze en, we propose two _clu_sterlng-relat[ed methods of identif
the delivery delay. Figure 2(c) shows results for SimBetwit Y distinguishable similarity patterns: one base_d on spbc
CAVE contacts. It shows similar properties, i.e., low deslaygraph theory [19] and the other based on established methods

compared to the baseline, at only a narrow range of sm%ﬁ evaluating the quality of graph partitioning [29]. Botarc
densities. e used at the core of our algorithm. Eventually, we evaluate

We have also evaluated the protocols’ CNA componen%e performance of the DTN routing protocols operating with

. ST . ) S a graph obtained from our online algorithm, and show that
(i.e., similarity, community detection, centrality) indtilually, . . . :
: . - .2 . they perform as well as with the optimal density found in
with respect to graph density, and observed similar seitgiti .
! : Lo Section Il (see Table ).
to density. We omit these plots due to space limitations.

IV. INFERRING THEOPTIMAL AGGREGATIONDENSITY  A. Optimal community structure of the social graph

USING AN ONLINE ALGORITHM One way to distinguish regular neighbors from random

There is clearly an optimal density (or rather a narroweighbors is by their similarity valueBach node will see a set
range of densities) for the aggregated social graph, autsid of nodes to which it is highly similar (i.e., many shared fegu
which the performance of CNA-based DTN routing protocolseighbors in the graph) and another set of nodes to which
significantly degrades. Although density-based aggregatiit is less similar (i.e., random neighborspur problem can
can directly operate the social graph around a given dengitgw be cast as maximizing the similarity to regular neiglsbor
point, an interesting question arisd¢dow can nodes find an while minimizing the similarity to random ones. In order to
optimal aggregation density in real time, without any priomotivate this approach, we use the CAVE model (without
knowledge (e.g., mobility context) and using local infotiora rewiring, see also Section 1l1), to derive the expected neimb
only, to optimize their performance? of regular neighbors and the expected number of random

We conjecture that this optimal density lies at the pointeighbors of a node in the aggregated graph. From these, we
where the underlying (social) structure guiding mobilitgsb get the expected values of similarity that would be observed
correlates with the social structure that can be observed @mline, as a function of time. Note that the same methodology
the aggregated contact graph. In other words, a strong “e&n be applied to CAVEvith rewiring and to the SW model.
lationship” in the contact process (e.g., a community/tegu  Expected Number of Regular Links: Let n,.4(c) denote
link in SW or CAVE) should also be an observable relationshipe number ofegular links of a node in the aggregated social
(edge) in the aggregated graph; at the same time, the nurhbegraph, afterc contacts with other nodes. Then, the expected



- - - Regular Links - - - Similarity (Regular) This similarity quantity has predictive value, as the existe
40 ;Rando(anks 08 ““Smlaqty(Random) . . . .
Total Links 2 08— Siniarty Difference of the edges accounted for in it, implies that a future contac
90 £ o4l between the vertices at the ends of each of these edgesés quit
2 § probable.
* 20 g% The expected number of commaendomcontacts is
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L ‘ ‘ ‘ T ‘ ‘ ‘ ‘ Elsimpeg—rnd(c)] = (N —=k) (1 -1 - —— . (5)
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#of Contacts #of Contacts L . .
(a) # Links vs. # Contacts (b) Similarity vs. # Contacts E?(peCted Similarity of Random Ne|ghb_or§:lf U andv are
not in the same community, we have to distinguish the follow-
Fig. 3. Number of links and similarity values as a functiontiofe. ing two cases: (i) random contacts of nad@appen to occur

with regular neighbors of nodeand vice versa; we denote the

number of regular links is: number of such common neighbors B&im,,q—req(c)]; (i)

_ 1-q\° random contacts of node happen to coincide with random
Elnreg(c)] = (k= 1)- (1 N (1 k- 1) > - @ contacts of node, denoted as[sim,nq—rna(c)]. Then,
1 — ¢ is the probability that the contact is regular — see E[8iMmd—_reg(c)] =
Section Il — and there aré — 1 regular links for a node,

thus, the probability of a contact to be a specific nadis 5, _ 1) <1 _ <1 1= Q>c) (1 B (1 g )C>
7=¢. The probability that we observe at least one contact to k-1 N -k ’
u is one minus the Probability that we do not see the nodg, 4

thus, 1 — (1— =) . This is valid for each of thet — 1

1 . c\ 2
nodes independently, so, the expected number of filled @egul E[sim,..q_na(c)] = (N — 2k) (1 — (1 __ 1 ) ) )
links after ¢ contacts is given by Eq. 1. Clearly, this number N —2k
is bounded above by — 1. In total, the expected similarity of random neighbors is

Expected Number of Random Links: The same way we , , )
can easily derive the expected number of random links of & [5iMrna(c)] = E[simrpa—req(c)]+E[simrna—rna(c)]. (6)

node afterc contacts Eln,na(c)l, as This similarity quantity has little predictive value, as it
q ¢ accounts for incidental contacts that do not imply anything
Enma(c)] = (N —k)-(1—-(1- N_% - (2) about the same contact re-occurring.

In Figure 3(a), we plot the expected number of regula\xl To maximize the predictive capacity of the aggregated graph

d d total link functi ¢ tact py e want to maximizeE[sim,.4(c)], while at the same time
random, and fotal finks as a tunction of contacts Seen DY gnjmizing E[simynq(c)]. In practice, nodes do not have any
specific node (this is an implicit measure of time as wel

a - > S priori knowledge about community membership and size, or
f%r the tr;]artameters\_f t_ LOO,k ”_ 10,¢ _tO.l. Trlus fl!gllire the total number of nodes. Thus, it is more sensible to use
shows that theé point when a (or mos_) regular InksS arf,rmalized similarities and divide similarities by the exped
in the graph is reached quickly. In this scenario, this

. ; h ; Rode degre&[n,c,(c)] + E[nmmq(c)]. Consequently, in order
the right point to stop the aggregation and fix the dena%r our algorithrhq to automatically adjust the aggregation

After that poir_1t, only f_a”.dom links are added to the_ grapl(hindow to the optimal aggregation density, it seems redslena

These have little predictive value and erroneously in@eag, < e the following maximization problem:

nodes’ similarity. Next, we derive expected similarity wa '

explicitly. Denote the similarity of a node to an encountered Elsimyeq(c)] — E[Simmd(C)]) )
Enreg(c)] + Enrna(c)]

nodev assim(u,v) = |N(u) N N(v)|, whereN (u) is the set
of Eg;)gefé?gés O;irr]rc])i?a?i:[y of Regular Neighbors: Let F_igure 3(b) d_epicts the normalized similarities_, and th(_eir
Elsimyy(c)] denote the expected similarity (number 0f]llf'fe_rerjce. It is clear fror_n this plot, that the difference i
common neighbors) of a nodeto aregular neighborv, after maximized around the point where enough contacts per node
it has experienced contacts with other nodes. Such commoHaVe ocgurred to fill in most _regular I|nk§, but only few
random links have been instantiated. We will show later that
this maximum correlates well with the aggregation density a

neighbors can be from: (i) the — 2 remaining nodes of their
community, or (i), thel’ =k nodes of all other Communltles'which the performance of SimBet and Bubble Rap is optimal
(see Section ).

We denote the respective numbersBSim,qy—req(c)] and
Nevertheless, regular similarit§[sim,.4(c)| is not directly

maximize(
C

E[simyeg—rnda(c)].
E[simyeg(c)] = E[simreg—req(c)] + E[simyeg—rnalc)]. (3) observable without knowing which links are regular and Wehic
o - are not. In fact, in order to apply this maximization, nodes
E{aec?ngfetgfnﬁerﬂw'Qgeaiﬂo(?tﬁses {;htiéeﬁgzﬁggrcsog 2#3 Ityﬁeed to first be able to distinguish between these two classes
v. thus of links. When a node encounters another, it only knows
' ' ) and logs down its similarity value to this node. Out of the
Elsim (@] = (k—2) (1 ( 1—q)°) @) contacts observed over time, it can create a histogram of
reg—reg - - . - .

1= k—1 similarity values observed. One way to assign “labels” to
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Fig. 4. Modularity metrics of similarity values depending the density of the aggregated graph.

each past contact (“regular’ vs. “random”) is to perfornmormalized similaritypetweenu and the node encountered

clusteringon the set of normalized similarity values. If the IN(u) N N (v)]
aggregated density is appropriate2aneans[18] algorithm 8 = — (s; €10,1]), (8)
should produce two clusters sfmilar normalized similarity min{|N(u)], [N (0)[}

values, one for similar regular nodes and another for similahereN (z) is the set of neighbors of nodein the aggregated
random nodes. Note, however, that at low (close to 0) and higbicial graph. In other words, each node has now a veaibn
densities (close to 1) only one cluster appears since aksiodeal-valued entries if0, 1] representing the various similarity
have similar similarities close to 0 (no similarity) and 1 (all values observed thus far. According to the previous disonss
nodes similar), respectively. Eq. (7) then becomes eqgrital when the right amount of contacts)(has been observed, the
to maximizing the distance between the two cluster cergroidalues in this vector should cluster around small and high
of low and high densities. values.

In order to formally measure this spectral clustering [19]

converts the vectos into ann x n affinity matrix W.

. . . o W = {wi}, 9)
Although the above discussion provides useful intuition, i I

2
practice, the structure guiding mobility (and thus corgact  w,;; = exp(—&_ij].”%if i#7j,andw;; =1,
cannot be captured in a straightforward way using the 2-mean 20
clustering approach based on normalized similarity. Fast with o € [0, 1] (threshold value).
explained earlier, there might not be 2 clear cluster cerdéer Let us further define theaplacianof W as
low and high densities, in which case the result returnedby t _1 _1
simple 2-means approach is unreliable. Second, the redd wor L=I-D"2WD"2, (10)
traces, albeit sharing basic structure with the synthetdefs, \wherel is the identity matrix and is the diagonal matrix
exhibit more heterogeneity: nodes might belong to moighose (i,i)-elemend;; = wyj (i.€., is thedegreeof vertexi
than one community, degree distributions might be skewegh the matrixw). Spectral éraph Theorgtudies the structural
communities might be overlapping, and the line betwegftoperties and invariants of the weighted graph definetby
regular and random contacts becomes blurred. As a resalt, figing eigenvalue decomposition of the LaplacianSpectral
two classes of similarities might not be easily distingaisle clustering uses this theory to identify strongly connected
even around the “right” aggregation point. Thus, the simptomponents iniv with few weak links between them, by
clustering algorithm sketched above, based only on C|ustﬁ'l’ojecting then points into the eigenspace df consisting
center distance, might draw deceiving conclusions. of L’s first k eigenvectors. In fact, spectral clustering methods
To cope with the difficulty of identifying a contact assolve a relaxation of theormalized cuproblem (a known NP-
random or regular, we use two approaches to assess Hwawd problem), which is a min cut problem under the constrain
distinguishable the two clusters returned by the clusterithat the two cut-sets are balanced.
algorithm are. One ispectral analysisof a pre-processed In the ideal case wher&V is block-diagonal, that is,
similarity matrix and the study of the matrixalgebraic it consists ofk connected components with all weights 0
connectivity[19]. The second is th&) function of cluster between blocks, the eigenvaluksi =1...n of L are:
modularity that has been found to correlate with clustetitjua
in many gxamples [29]. ¥ A== A =0 <A S A (11)
Spectral Analysis: Let us assume that a node has This means, it has exactly eigenvalues equal t6, and all
collected a set ofr contactsc; (¢ = 1...n) during a time other eigenvalues bounded away from and larger thamthat
period (according to one of the methods in Section Il). Nod=ase, spectral clustering algorithms are guaranteed tdifige
u uses these contacts to build its view of the social graphh Eadlusters correctly even when they form non-convex (non-
contactc; observed is assigned a real numbemeasuring the linearly separable) regions. In the non-ideal caag,s not

B. Robust Clustering of Similarity Values
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Fig. 5. SimBet and Bubble Rap performance with differentraggtion functions compared to direct transmission.

. L . . Protocol SW  CAVE MIT ETH  INFO
block diagonal (i.e., is connected with lower weights betwe STBTME 11733 30/30 T8/ 7 1515 12/12

clust_ers), and only the first eigenvaluelofs 0. Ne_vertheless, SimBet MR 3.6/3.2 2.8/25 21/2.0 14/15 1.3/1.2
matrix perturbation theory [30] suggests that if the cltste g ppe MF  2.9/27 3.6/3.8 21/1.7 1.5/1.5 1.3/1.2
are compact and modular (in other words, identifiable by agupple MR  3.2/3.3 3.4/3.2 1.8/1.3 14/14 1.1/1.2
human), the eigenvalues corresponding to these clustdirs w
still be small. TABLE IlI
This is the basis of our algorithm. We expect to see eithepPerrorMANCE FACTORS USING THE DENSITY ADAPTION ALGORITHM
of two things: Either two Separab|e (even if noisy) 5|mM| THE FIRST NUMBER IS FOR ALGEBRAIC CONNECTIVITYTHE SECOND
value clusters in the optimal density range, or only oneyor t NUMBER FOR THE MOSTQ MODULARITY.
non-easily separable ones) if density is too high or too @ur.
algorithm then seeks to locally minimize the second eiglereva we compute similarity values, using the aggregated graph at
A2 of the Laplacian (known as th&lgebraic Connecitiviyof different densities. Aftern contacts, we use these similarities
the similarity vectors observed over time. to determine the gradient of the Algebraic Connectivity (or
Modularity Function Q: A different approach often usedQ Function) and adapt the density of operation accordingly,
for evaluating community structure in complex networkdis t towards the optimum. In order not to get stuck in local

use of an appropriateodularity function @ [29]: extrema, we use occasional random lookaheads.
~ AV, V) AV, V) 2 C. Performance Evaluation
QPr) =) AT —( > . (12) R ) .
gt (v, V) AV, V) Using this simple tracking algorithm, we evaluate how

, . ) , close we get to the optimal performance (see Section lll).
whereP, is a partition of the vertices into groups and where gigyre 5(a) shows the cumulative number of messages Bubble
AV VD) = Yiey jev wig, With W = {w;;} defined as Rap delivers, when we create messages between random
above. This function attempts to evaluate a particular lyragender and destination throughout the simulation. We @oos
partitioning by measuring the ratios of intra-communitykb  the density with the online algorithm using the Algebraic
to inter-community links. The more the intra-communitykiin connectivity metric, and compare it to the original offline
occurrence diverges from what one would expect for a rand%orithm with growing time window and to direct transmis-
network, the more clearly separable the communities, aed @lon. We observe that after a short initial period, the grmwi
higher the value of Q. . time window graph becomes too dense to be useful, and the
Although the modularity function approach and the spectrgkrformance degrades compared to that of direct transnissi
clustering approach are not completely different (in factie  the two lines are parallel). On the other hand, our
spectral methods can be used to maximize Q [31]), these h@fline algorithm keeps the good performance throughout the
particular strengths and weaknesses (as we have also etdsegyyylation with both — the most recent and most frequent —
for our datasets), as well as differences in implementati%ppings_ Most frequent performs a bit better in this case, a
overhead. For this reason, we are going to present results égmmunity links are more frequent than random ones in the
both approaches and compare their performance in variQd&/e model by design.
scenarios. ) _ _ ) _ A similar result is shown in Figure 5(b), where we use
Online optimal density tracking algorithm: The idea is simBet and the ETH trace with the same simulation setup.
to find the density at which thégebraic Connectivityof  owever, in this case the performance increase is a bit small
observed similarity values is minimal, or alternativeletQ since the trace is less structured, as reported in Section I
function is maximal. While collecting and loggingcontacts, Figure 5(c) shows the evolution of the chosen density by
SWe set the update interval empirically to 100 contacts, as a tradeoff our qnllne algorithm in the course of trace tlm-e (MIT)' Our
between having enough similarity samples, and reactinﬁékilftly fast to a'9°”,thm moves around a densny Of09,. which indeed .
changes in the network. coincides with the best performance benefit calculatedneffli



(cf. Table Il). We note here that, in the case of the traces,
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In future work, we intend to look deeper into the vari
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from state-of-the-art, trace-based mobility models (§28]),
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similarities. We intend to use both traditional graph nestri
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interested in exploring more sophisticated mappings,, e
appropriate weighted graphs, as these can potentiallyieapi2s]
more information and spectral methods are still applicable
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based approaches. Specifically, although these schemes hav
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