
Modern Data Engineering for Data Science Projects

Project 1: (2-3 persons)
[SQL engine, query plans, engineering flavor]
Automatic query rewrite of complex SQL queries containing user-defined functions

● In:
○ plans: postgreqs / monetdb / sqlite / vertica / duckdb

● Out:
○ sql statement

● Data:
○ Tpc-h, q6 and q19
○ Text analysis
○ Zillow
○ Flights

● Steps:
○ Convert plan into a data flow graph (DFG)
○ Generate SQL from a DFG

Project 2: (1-2 person)
[algorithmic, graph traversal, dynamic programming]
Operator fusion using dependency analysis

● In:
○ Data flow graph representing a query plan

● Out:
○ Fused query plan

● Data:
○ DFG graphs for zillow vs all, flights

● Steps:
○ Identify sets of operators that can be fused
○ Create fused query plan following a DP, recursive approach

Project 3: (1-2 persons)
[query optimization, machine learning]
Learning cost models for black-box operators using Bayesian Optimization

● In:
○ An operator, a set of platforms, execution parameters

● Out:
○ Cost model for the operator: statistics estimates, cost function

● Data:
○ Platforms: Monetdb, PostgreSQL
○ Queries: tpc-h, zillow, flights, textmining

● Steps:
○ Learn/read about BO, read cherrypick paper[1]
○ Setup testbed

Project 4: (2 persons)
[familiarity with Python booster technology: transpilers, IR]
Convert Python programs to SQL queries

● In:
○ A set of python programs

● Out:
○ The corresponding SQL statements

● Data:
○ Platforms: SQLite, Monetdb, PostgreSQL
○ Queries: tpc-h, zillow, flights, text-mining (focus on 4-5 udf’s)

● Steps:
○ Use a Python-to-SQL transpiler (e.g., Grizzly) to parse Python programs
○ Use an IR-based approach (e.g, Weld) to parse Python programs
○ Extend the mechanism to support user-defined functions

Project 5: (2-3 persons)
[familiarity with big data platforms, develop analytical skills, engineering flavor]
Benchmarking big data systems for data science queries

● In
○ SQL with Python UDFs

● Out
○ Experimental analysis

● Data
○ Platforms: SQLite, DuckDB, PostgreSQL, MonetDB, Vertica (community edition),

Spark, MongoDB, Dask
○ Datasets: zillow, flights, logs, tpch, 311
○ Dimensions: parallelism (single-threaded vs multi-threaded), caches (hot/cold),

data size
● Steps

○ Investigate and deploy platforms
○ Run experiments

Project 6: (1-2 persons)
[programming puzzle]
Support Dynamic typed Python UDFs in databases

● In
○ Dynamic typed Python UDF
○ SQL query

● Out
○ Python UDF is registered and query runs

● Data
○ Platforms: PostgreSQL, MonetDB

○ Datasets: zillow, flights
● Steps

○ Investigate input data types via query plan
○ Investigate output data types via sampling and sql extensions
○ Wrap the python function with a create function statement
○ Rewrite and execute the SQL query

References and software links

[1] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick:
Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 469–482
[2] Palkar, S., Thomas, J. J., Shanbhag, A., Narayanan, D., Pirk, H., Schwarzkopf, M., ... & Zaharia, M.
(2017). Weld: A common runtime for high performance data analytics.
[3] Hagedorn, Stefan, Steffen Kläbe, and Kai-Uwe Sattler. "Putting Pandas in a Box." CIDR. 2021.
[2] https://github.com/weld-project/weld
[4] https://github.com/dbis-ilm/grizzly

https://github.com/weld-project/weld
https://github.com/dbis-ilm/grizzly

