Maximum k-Coverage

Vasilis Margonis

Combinatorial Optimization

 $\propto \wedge \mu \forall$

November 14, 2017

Definition

Input:

- A universe of m elements: $\mathcal{U} = \{e_1, e_2, \dots, e_m\}$.
- n subsets of \mathcal{U} : $\mathcal{S} = \{S_1, S_2, \dots, S_n\}$.
- An integer k.

Goal:

• Find a subset S' of S, such that $|S'| \leq k$ and the number of covered elements $\left|\bigcup_{S_i \in S'} S_i\right|$ is maximized.

ILP Formulation

Maximize
$$\sum_{e_j \in \mathcal{U}} y_j$$

Subject to $\sum_{S_i \in \mathcal{S}} x_i \leq k$
 $\sum_{e_j \in S_i} x_i \geq y_j \;, \quad \forall e_j \in \mathcal{U}$
 $y_j \in \{0,1\}, \quad \forall e_j \in \mathcal{U}$
 $x_i \in \{0,1\}, \quad \forall S_i \in \mathcal{S}$

Greedy Algorithm

Algorithm 1 Greedy Covering $(\mathcal{U}, \mathcal{S}, k)$

- 1: $C \leftarrow \varnothing$
- 2: while $|C| \le k$ do
- 3: Select $S_i \in \mathcal{S}$ such that $|S_i \cap \mathcal{U}|$ is maximized
- 4: $\mathcal{U} \leftarrow \mathcal{U} S_i$
- 5: $C \leftarrow C \cup \{S_i\}$
- 6: end while
- 7: **return** *C*

Approximation Ratio

Theorem (1)

Greedy Covering is a $(1-\frac{1}{e})\simeq 0.632$ -approximation for Maximum k-Coverage.

- *OPT* := The value of an optimal solution.
- $x_i := \text{Number of elements covered in the } i\text{-th iteration}.$
- $\bullet \ y_i := \sum_{j=1}^i x_j.$
- $z_i := OPT y_i$.
- $y_k = SOL := \text{Number of elements covered by Greedy Covering.}$

Analysis

Lemma (2)

For every $i=1,\ldots,k$, $x_i\geq \frac{z_{i-1}}{k}$.

Proof:

- At each iteration, GREEDY COVERING selects the subset S_j which covers the maximum number of uncovered elements.
- The optimal solution uses k sets to cover OPT elements.
- Then, in the *i*-th iteration, there is a set that covers at least $\frac{z_{i-1}}{k}$ elements.
- Hence, $x_i \geq \frac{z_{i-1}}{k}$.

Analysis

Lemma (3)

For every $i=0,\ldots,k$, $z_i \leq (1-\frac{1}{k})^i \cdot OPT$.

Proof:

- The claim holds for i = 0, since $z_0 = OPT$.
- Inductively, we assume that $z_{i-1} \leq (1-\frac{1}{k})^{i-1} \cdot \mathit{OPT}, \ i>1.$ Then

$$z_{i} \leq z_{i-1} - x_{i} \stackrel{(2)}{\leq} z_{i-1} - \frac{z_{i-1}}{k}$$

$$\leq z_{i-1} \cdot \left(1 - \frac{1}{k}\right)$$

$$\leq \left(1 - \frac{1}{k}\right)^{i} \cdot OPT \qquad \Box$$

Analysis

Proof of Theorem (1).

- From lemma (3), it follows that $z_k \leq (1 \frac{1}{k})^k \cdot OPT$.
- Also, for every $k \ge 1$, $(1 \frac{1}{k})^k \le 1/e$.
- Hence, $z_k \leq \frac{1}{e} \cdot OPT$.
- Then

$$SOL = y_k = OPT - z_k \ge OPT - \frac{1}{e} \cdot OPT = \left(1 - \frac{1}{e}\right) \cdot OPT \quad \Box$$

Theorem (Feige, 1998)

For every $\varepsilon > 0$, there is no $(1 - \frac{1}{e} + \varepsilon)$ -approximation algorithm for MAXIMUM k-COVERAGE, unless $\mathbf{P} = \mathbf{NP}$.