
5 MPI : The Message Passing Interface

5.1 The message passing paradigm

In general, message passing means a parallel computational model. A computational model is a
conceptual view of what types of operations are available to the program [McBryan94], [Andrews91],
[GropLusk94]. It does not include the specific syntax of a particular programming language or library,
and it is independent of the underlying hardware.1

The sequential paradigm for programming is a familiar one. The programmer has a simplified
view of the target machine as a single processor which can access a certain amount of memory (Figure
5-1). He or she therefore writes a single program to run on that processor. The paradigm may in fact be
implemented in various ways, perhaps in a time-sharing environment where other processes share the
processor and memory, but the programmer wants to remain above such implementation-dependent
details, in the sense that the program or the underlying algorithm could in principle be ported to any
sequential architecture - that is after all the point of a paradigm.

The message-passing paradigm is a development of this idea for the purposes of parallel
programming. Several instances of the sequential paradigm are considered together. That is, the
programmer imagines several processors, each with its own memory space, and writes a program to
run on each processor. So far, so good, but parallel programming by definition requires co- operation
between the processors to solve a task, which requires some means of communication. The main point
of the message-passing paradigm is that the processes communicate by sending each other messages.
Thus the message-passing model has no concept of a shared memory space or of processors accessing
each other's memory directly. As far as the programs running on the individual processors are
concerned, the message passing operations are just subroutine calls. In Figure 5-2 we don't show a
specific communication network because it is not part of the computational model, rather it is part of
the underlying hardware.

In real applications, for the part of the computation local to a process conventional languages like
C or Fortran can be used, but subroutine libraries or macros are used to manage the passing of
messages between processes.

1 However, the efficiency of the applications may depend on the gap between the model and the machine.

Figure 5-1: The sequential programming paradigm

Figure 5-2: The message-passing programming paradigm

142 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

The message-passing model is not uniformly superior to other parallel computational model (e.g.
shared-memory, remote memory operation, etc.), but it has become widely used and it is expected to be
around for a long time. Some arguments for message-passing model are listed here:

• Simplicity. Sequential languages familiar to most application programmers can be used to
perform the bulk of the computation.

• Universality. The model fits well on separate processors connected by a (fast or slow)
communication network, Thus, it matches the hardware of most today's parallel super-
computers, as well as the workstation networks that are beginning to compete with them.

• Expressivity. Message-passing has been found to be a useful and complete model in which to
express parallel algorithms.

• Ease of debugging. Debugging of parallel programs remains a challenging research area. One
of the most common causes of error in parallel applications is unexpected overwriting of
memory. The message-passing model, by controlling memory references more explicitly than
any of other models (only one process has direct access to any memory location), makes
easier to locate erroneous memory reads and writes.

• Performance. The most compelling reason that message-passing will remain a permanent
part of the parallel computing environment is performance. As modern CPUs have become
faster, management of their caches and the memory hierarchy in general has become the key
to getting the most of them. Message-passing provides a way for the programmer to explicitly
associate specific data with processes and thus allow the compiler and cache- management
hardware to function fully.

5.2 What is MPI?

MPI is a proposed standard message-passing interface, [MPI Forum94] [GropLusk94]. It is a library
specification, not a language. The programs that users can write in Fortran 77 and C are compiled with
ordinary compilers and linked with the MPI library. In principle, a sequential algorithm is portable to
any architecture supporting the sequential paradigm. However, programmers require more than this:
they want their realization of the algorithm in the form of a particular program to be portable - source-
code portability. The same is true for message-passing programs and forms the motivation behind MPI.
MPI provides source-code portability of message-passing programs written in C or Fortran across a
variety of architectures. Just as for the sequential case, this has many benefits, including

• protecting investment in a program

• allowing development of the code on one architecture (e.g. a network of workstations) before
running it on the target machine (e.g. fast specialist parallel hardware)

MPI was the first effort to produce a message-passing interface standard across the whole parallel

processing community. Sixty people representing forty different organizations - users and vendors of
parallel systems from both the US and Europe - collectively formed the "MPI Forum". The discussion
was open to the whole community and was led by a working group with in-depth experience of the use
and design of message-passing systems (including PVM, PARMACS, p4, etc.). The two-year process
of proposals, meetings and review resulted in a document specifying a standard Message Passing
Interface (MPI).

Emerging a standard is very important due to the following reasons:

• Portability and ease-of-use.

• Provides hardware vendors with well-defined set of routine to implement efficiently.

• Pre-requisite for the development of concurrent software industry.

• Will lead to more widespread use of concurrent computers.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

143

5.3 General aspects of MPI

5.3.1 What is in MPI ?

MPI was defined to include relatively large number of features that had proven useful in various
existing message-passing libraries. According to this, the MPI standard has about 125 functions in it.
To keep it manageable, the designers of MPI attempted to make the features of MPI consistent and
orthogonal. This means that users can incrementally add sets of functions to their repertoire as needed
without learning everything at once. MPI deals with the following areas:

• Point-to-point message passing. The simplest form of message is a point to point
communication. A message is sent from the sending process to a receiving process. Only
these two processes need to know anything about the message. The two basic operations are
the send and the receive, but they have a few different versions which represent different
semantics in the communication.

• Collective communication. A proven concept from existing message-passing libraries is the
notion of collective operation, performed by all the processes in a computation, i.e. it allow
larger numbers of processes to communicate (e.g broadcast operation). Collective operations
are of two kinds:

1. Data movement operations are used to rearrange data among processes. The simplest of
these is a broadcast, but many elaborate scattering and gathering can be defined (and are
supported in MPI).

2. Collective computation operations are used to compute a value from data located
different processes, e.g. minimum, maximum, sum, logical OR, etc., as well as user-
defined operations.

All of these operations can be built out of point to point communications but it is a good idea use

provided routines if they exist. (For example, the message-passing library can take advantage of its
knowledge of the structure of the machine to optimize and increase the parallelism in these operations.)

• Support for process groups. Processes belong to groups. A process group is an ordered
collection of processes, and each process is uniquely identified by its rank within the ordering.
For a group of n processes the ranks run from 0 to n - 1. Process groups can be used in two
important ways. First, they can be used to specify which processes are involved in a collective
communication, such as a broadcast. Second, they can introduce task parallelism into an
application, so different groups perform different tasks.

• Support for communication contexts. Communication contexts are used to separate families
of messages. They promote software modularity by allowing the construction of independent
communication streams between processes, thereby ensuring that messages sent in one phase
of an application are not incorrectly intercepted by another phase. Communication contexts
provides to library writers for the first time the capabilities they need to write parallel libraries
that are completely independent of user code and inter-operable with other libraries.

• Support for application topologies. In many applications the processes are arranged with a
particular topology, such as a two- or three-dimensional grid. MPI provides support for
general application topologies that are specified by a graph in which processes that
communicate a significant amount are connected by an arc. Topologies provide a high- level
method for managing process groups without dealing with them directly.

• Profiling interface. The MPI Forum recognized that profiling and other forms of per-
formance measurement were vital to the success of MPI. At the same time, it seemed far too
early to standardize on any particular performance measurement approach. Common to all
approaches, however, is the requirement that something particular happens at the time of
every MPI call in an application, for example to write a log record. The MPI Forum decided,
therefore, to include in MPI a specification for how it would be possible for anyone to
intercept calls to the MPI library and perform arbitrary actions.

144 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

5.3.2 What is not in MPI ?

Deliberately outside the scope of MPI is any explicit support for:

• Initial loading of processes onto processors

• Spawning of processes during execution

• Multithreading (but MPI is designed to be thread safe)

• Parallel I/O

• Active messages

• Virtual shared memory

5.3.3 Process model and groups

In MPI the fundamental computational unit is the process. The process means the smallest addressable
unit of computation. Each process has an independent thread of control, and a separate address space.
The MPI process model is static, so as far as the application concerned, a fixed number of processes
exist from program initiation to completion. Each process may execute its own distinct code in MIMD
style, however MPI does not provide mechanisms for loading executable codes onto processors or
assigning processes to processors.2

Processes belong to groups. Although MPI process model is static, process groups are dynamic in
the sense that they can be created and destroyed, and each process can belong to several groups
simultaneously. However, the membership of a group is static : for one or more processes to join or
leave a group, a new group must be defined rather then modifying the original one.

Processes are specified - named - by two attributes: a group and a rank relative to the group. For a
group of n processes the ranks run from 0 to n - 1.

5.3.4 Separating families of messages

Nearly all message-passing systems provide a tag argument3 for the send and receive operations. This
argument allows the programmer to deal with the arrival of messages in an orderly way, even if the
arrival of messages is not in the order desired. The message-passing system queues messages that
arrive "of the wrong message tag" until the program(mer) is ready for them. MPI extends the notion of
tag with a new concept: the context. Contexts are allocated at run time by the system in response to
user requests and are used for matching messages. They partition the "message label space" allowing
the construction of independent tag spaces. In MPI, a message label is specified by the message
context and the message tag relative to the context.

5.3.5 Communication scope

The "scope" of a communication operation is specified by the context used and the process group
involved. The notion of context and group are combined in a single object called a communicator,
which becomes an argument to most point-to-point and collective operations. Contexts are not visible
at the application level, they are always hidden in the communicator objects. So the programmer must
deal with communicators instead of contexts. When a new communicator object is constructed by the
programmer the system generate a unique context and put it into the communicator automatically.

5.3.6 Bindings to C and Fortran 77

The MPI standard specifies the format and behaviour of a set of C functions and a similar set of
Fortran 77 subroutines. All names of MPI routines and constants in both C and Fortran begin with the
prefix MPI_ to avoid name collisions. In the following, we use the C syntax. An MPI function
generally has the following format:

error = MPI_xxxxx(parameter, ...)

2 Generally the process management is up to the MPI implementations and according to this, it can be

significantly different with respect to the different implemented MPI systems.
3 The tag argument usually is an integer value.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

145

A successful MPI routine will always return the integer constant MPI_SUCCESS, but the be- haviour
of an MPI routine which detects an error depends on the error-handler associated with the
communicator involved. The default error-handler simple causes the program to abort when an error
occurs.Due to this fact, we will ignore the return values of the MPI functions in our example
programs.4 Several implementations of the MPI functions/subroutines exist, covering a wide range of
different parallel machines.

5.3.7 General MPI programs

Every MPI program must contain the preprocessor directive

#include “mpi”

This file, mpi.h, contains the definitions, macros and function prototypes necessary for compiling

an MPI program. The function MPI_Init is used to initialize the MPI stuff, so it must be called before
any other MPI function. It must be called at most once, subsequent calls are erroneous. After a
program has finished using the MPI library, it must call MPI_Finalize in order to clean up all MPI
state. Once this routine is called, no MPI routine may be called. So a typical MPI program has the
following layout:

 ...
#include “mpi.h”
 ...
main(int argc, char** argv) {
 ...
 /* No MPI functions called before this */
 MPI_Init(&argc, &argv);
 ...
 MPI_Finalize();
 /* No MPI functions called after this */
 ...
} /* main */
 ...

5.3.8 The first example and the SPMD paradigm

As it is usual in the C-related world, the first example is a version of the classical "Hello, world!"
program. The code is as follows:

#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char *argv[];
{
 int myrank; /* Rank of process */
 int numprocs; /* Number of processes */

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

 printf("Process %d of %d says Hello!\n",
 myrank, numprocs);

 MPI_Finalize();
}

4 However, MPI allows the programmer to define and apply his own error-handler functions instead of the default

ones.

146 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

The program must be compiled with a C compiler and then must be linked with the MPI library. The
way in which MPI programs are "launched" on a particular machine or network is not itself part of the
MPI standard. Therefore it may vary from machine to another. Providing that we have the compiled
and linked executable called "hello", one would use a command something like:
 hello -np 4
to run this program with four processes (every process executes the same code). The output then
should be:

 Process 1 of 4 says Hello!
 Process 2 of 4 says Hello!
 Process 0 of 4 says Hello!
 Process 3 of 4 says Hello!

If the code is run with two processes (e.g. hello -np 2),the output should be:

 Process 1 of 4 says Hello!
 Process 2 of 4 says Hello!

Now let us investigate the source code of the program. After defining two integer variables,

myrank and numprocs, and initializing the MPI library (MPI_Init()), two MPI function are called :
MPI_Comm_size() and MPI_Comm_rank(). Both of them have two arguments, a communicator and
a pointer to an integer variable. They get the default communicator MP_COMM_WORLD as them
first actual parameters. The MPI_COMM_WORLD is a predefined communicator for all MPI
application. It defines one context and a process group which contains all processes in the application.
The MPI_Comm_size() returns (in numprocs) the number of processes that the user has started for
this program.5 The value of numprocs is actually the size of the group associated with the default
communicator MPI_COMM_WORLD. We think of processes in any group as being numbered with
consecutive integers beginning with 0, called ranks. Each process finds out its rank in the group
associated with a communicator by calling MPI_Comm_rank().

At the end, a printf() is called6 to make the process print out a hello message together with the
values of its myrank and numprocs variables, and then the MPI_Finalize() is called which terminates
the MPI "environment".

Our hello program uses the Single Program Multiple Data or SPMD paradigm. That is, we obtain
the effect of different processes execute different code by taking branches within a single program on
the basis of process rank: the statements executed by process 0 are different from those executed by
other processes, even though all processes are running the same program. SPMD paradigm is very
common approach, especially concerning MPP (Massively Parallel Processing) applications where the
number of processes can be very large (even several hundreds).7

5.4 Point-to-point communication

A point-to-point communication always involves exactly two processes. One process sends a message
to the other. This distinguishes it from the other type of communication in MPI, collective
communication, which involves a whole group of processes at one time.

To send a message, a source process makes an MPI call which specifies a destination process in
terms of its rank in the appropriate communicator (e.g. MPI_COMM_WORLD). The destination
process also has to make an MPI call if it is to receive the message. Both the source and destination
processes must specify the same8 communicator whose group they must both be in (Figure 5-3).

The basic send and receive pair of MPI routines have the following C bindings:

5 As MPI has a static process model, the number of processes does not change while the MPI library is used by

the application, i.e. "between the MPI_Init() and MPI_Finalize()".
6 This sample program is kept as simple as possible by assuming that all processes can do output. However, not

all parallel system provide this feature.
7 The MIMD paradigm is more general than the SPMD one, but essentially they are the same, because it is

possible (and easy) to construct the appropriate (equivalent) SPMD version of any MIMD application.
8 This is due to the fact that every different communicator object has its own unique context.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

147

int MPI_Send(void* buf, int count,
 MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

int MPI_Recv(void* buf, int count,
 MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Status *status)

In MPI, a message always contains a number of elements of some particular datatype. The first

three arguments (that are the same at both functions) define the message buffer in the memory, where
the message should come from or where it should be stored. The (message,count,datatype) triple
describing count occurrences of the data having MPI type datatype starting at buf. The datatype may
either be one of the predefined MPI basic datatypes or a user-defined derived datatype (described
later, see Sect. 5.7). The most impor- tant basic MPI types are listed in Table 5-1, together with the
corresponding C types.

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long_double

Table 5-1: The basic predefined MPI data types

When a message is sent, the receiving process must in general be expecting to receive the same
datatype. For example, if a process sends a message with datatype MPI_INTEGER the receiving
process must specify to receive datatype MPI_INTEGER, otherwise the communi- cation is incorrect
and behaviour is undefined.

Note that the amount of space allocated for the receiving buffer does not have to match the exact
amount of space in the message being received. MPI allows a message to be received as long as there
is sufficient storage allocated.

The arguments dest and source are, respectively, the ranks of the receiving and sending process.
MPI allows source to be "wildcard". There is a predefined constant MPI_ANY_SOURCE that can be
used if a process is ready to receive a message from any sending process rather than from a particular
one. There is not a wildcard for dest. Ranks are relatives to the group represented by the communicator
comm (6-th argument of the functions).

Figure 5-3: Point-to-Point Communication

148 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

The next argument is the tag parameter. It allows the programmer to send some extra information
about the actual message, e.g. to distinguish between messages sending in different phase of the
process. In the receiving process, the programmer can either apply a particular tag value to receive
message only with the particular tag, or can apply the predefined constant MPI_ANY_TAG if he is
ready to receive message with any tag value. MPI guarantees that integers 0 - 32767 can be used as
tags, but most implementation allows much larger values. Tags are relatives to the context represented
by the communicator comm (6-th argument of the functions).

The communicator comm is the next argument, which defines the scope of the communication.
The ranks and tags are relatives to the comm. There is no wildcard for the communicator. In other
words, in order for process A to send a message to process B, the argument comm that A uses in
MPI_Send must be identical to the argument that B uses in MPI_Recv.

The source or tag of a received message may not be known if wildcard values (MPI_ANY_SOURCE,
MPI_ANY_TAG) were used in the receive operation. The information is returned by the last ar- gument,
status, of MPI_Recv(). The status is a structure that contains two fields named MPI_SOURCE and
MPI_TAG. Thus, status.MPI_SOURCE and status.MPI_TAG contain the source and tag,
respectively, of the received message. The status argument also returns information on the length of
the message received. However, this information is not directly available as a field of the status
variable and a call to MPI_Get_count function is required to "decode" this information :

int MPI_Get_count(MPI_Status status,
 MPI_Datatype datatype, int *count)

It returns (in the count) the number of elements received. (It counts elements, not bytes.) The datatype
argument should match the argument provided by the receive call that set the status variable.

MPI_Send and MPI_Recv are both blocking communication operation. That is, they return only
if the communication operation is locally complete on the process, i.e. if the process has completed its
part in the operation. In practice it means the followings:

• MPI_Send() does not return until the buffer is "empty" so available for reuse. (The message
to be sent has been copied out of the buffer.)

• MPI_Recv does not return until the buffer is "full" so available for use. (The message has
been arrived and copied into the buffer.)

5.4.1 Example : simple point-to-point communication

We can illustrate the usage of MPI_Send() and MPI_Recv() by modifying our first example, the
"hello" program. Now process with rank 0 prints the greeting messages got from the other processes.

#include <stdio.h>
#include "mpi.h"
int main(argc,argv)
int argc;
char *argv[];
{
 int myrank; /* Rank of process */
 int numprocs; /* Number of processes */
 int source; /* Rank of sender */
 int dest; /* Rank of receiver */
 char message[100]; /* Storage for the message */
 MPI_Status status; /* Return status for receive */

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

149

 if (myrank != 0) /* My rank is not 0, so I must
 send greeting */
 { sprintf(message,"Greetings from process
 %d!",myrank);
 dest = 0;
 /* Use strlen(message)+1 to include _\0_ */
 MPI_Send(message, strlen(message)+1,
 MPI_CHAR, dest,15, MPI_COMM_WORLD);
 } else { /* My rank is 0, so I must receive
 the greetings */
 for (source = 1; source < numprocs; source++)
 { MPI_Recv(message, 100, MPI_CHAR, source,
 15, MPI_COMM_WORLD, &status);
 printf("%s\n", message);
 }
 }
 MPI_Finalize();
}

When the program is compiled and run with four processes, the output should be:

Greetings from process 1!
Greetings from process 2!
Greetings from process 3!

The C code is rather simple. There is an if statement with two branches. If the process has found

that its own rank is not 0, then it executes the first branch. It puts the greeting into the buffer message,
which is now a character array, and sends it to the process 0. Otherwise, if it is the process with rank 0,
then it executes the second branch and receives the greetings from each other process inside a loop.
Both send and receive use the default communicator MPI_COMM_WORLD. We use the same tag
value for sending and receiving (the concrete value is indifferent). However, we might have used the
wildcard MPI_ANY_TAG in MPI_Recv() as well. Note that process 0 receives the messages, which can
have different sizes, in a buffer large enough to store any of them - the buffer has storage for 100
characters.

5.5 Six function MPI

Now we have already known those basic MPI routines which represent the minimal MPI set (see Table
5-2). With only these six functions a vast number of useful and efficient programs can be written.

MPI_Init(...) Initialize MPI
MPI_Comm_size(...) Find out how many processes there are
MPI_Comm_rank(...) Find out which process I am
MPI_Send(...) Send a message
MPI_Recv(...) Receive a message
MPI_Finalize(...) Terminate_MPI

Table 5-2: The six-function version of MPI

The other functions all add flexibility (datatypes), robustness (non-blocking send/receive),
efficiency ("ready" mode), modularity (groups, communicators), or convenience (collective op-
erations, topologies). Nonetheless, one can forget all of these concepts and use only the routines from
MPI shown in Table 5-2. One can write complete message-passing programs with just these six
functions.

150 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

5.6 More on point-to-point communication

5.6.1 Blocking and non-blocking communication

The communications described so far are all blocking communications. This means that they do not
return until the communication has completed:

• MPI_Send does not complete until the buffer can be safely reused (i.e. the message to be sent
has copied out of the buffer)

• MPI_Recv does not complete until the buffer is ready for use (i.e. the message has received
and copied into the buffer)

Communication is not a major user of CPU cycles, but is usually relatively slow because of the

communication network and the dependency on the process at the other end of the commu- nication.
With blocking communication, the process is waiting idly while the communication is taking place.

MPI provides non-blocking communication to allow optimisation by overlapping communi- cation
and computation. A non-blocking communication is set up by one command then a later command
tests to see if the communication has completed. This allows a DMA engine to copy data while the
program is doing other work. So the communication is divided into two oper- ations: the initiation and
the completion test. Non-blocking communication is analogous to a form of delegation - the user
makes a request to MPI for communication and checks that its request completed satisfactorily only
when it needs to know in order to proceed.

The routine MPI_Isend begins the nonblocking send operation:

int MPI_Isend(void* buf, int count,
 MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm,
 MPI_Request *request)

The arguments are the same as for MPI_Send with the addition of an extra one, called request. This
argument, request, is very important as it provides a handle which is used to test when the
communication has completed (i.e. when the buffer can be reused). The MPI_Send and MPI_Isend
routines behave similarly except that the latter returns immediately, before the process has completed
its part in the communication operation. That is, the buffer containing the message to be sent must not
be modified until the completion of the operation is explicitly checked by calling a further appropriate
MPI routine.

Similarly, MPI_Irecv begins the non-blocking receive operation:

int MPI_Irecv(void* buf, int count,
 MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Request *request)

It has one additional argument, the handle (request) to test the completion, just as MPI_Isend does.
However it also has one less argument: the status argument, which is used to return information on the
completed receive, is deleted from the argument list. The function returns immediately, before the
message has arrived and placed into the buffer. The programmer must test with an appropriate MPI
routine whether or not the buffer is ready to use.

MPI provides two basic routines to check whether the initiated non-blocking send or receive
operation has completed. The first one is the MPI_Wait:

int MPI_Wait(MPI_Request *request, MPI_Status *status)

This routine blocks until the communication specified by the handle request has completed. The
request handle will have been returned by an earlier call to a non-blocking communication routine. If
the non-blocking operation is a receive routine then the status argument return the information on the
completed receive in the same form as MPI_Recv does for a blocking receive.

The second basic test routine for non-blocking communication is MPI_Test:

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

151

int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status)

This routine returns immediately after setting the flag variable true, if the operation identified by
request has completed, or false if it has not. If the communication operation is a receive and the flag is
set true after MPI_Test returning, then the status contains just the same information as MPI_Recv
does.

In many cases, one wishes to test or wait for many non-blocking operations at the same time. MPI
provides a way to wait for all or any of a collection of non-blocking operations (with MPI_Waitall
and MPI_Waitany) and to test all or any of a collection of non-blocking operations (with
MPI_Testall and MPI_Testany).

5.6.2 "Unsafe" communication

Although the standard blocking send and receive represent the simpliest way to transfer data between
processes, they can be "unsafe". Suppose that we have the following situation, using blocking
communication operations:

Process 0 Process 1
Send(1) Send(0)
Recv(1) Recv(0)

That is, we have two processes which want to communicate with each other. Both of them call the
(blocking) send routine first and then the (blocking) receive one.9 What can happen ? The fundamental
problem is that the blocking send operation may not return until the buffers can be safely reused.
Hence, if it is impossible to copy the message directly to the buffer defined by the corresponding
receive operation - because the corresponding receive operation has not been called yet - then the
message must be copied to an internal system buffer in order to allow the process to proceed, or the
send operation blocks (until the corresponding receive is called). However, system buffering is outside
of the scope of MPI. So the completion of the communications in the above example (Process 0 and
Process 1) depends on the details of the actual MPI implementation. There are two possibilities:

1. The MPI implementation have no system buffering at all, or the messages are too large to
store in the system buffers, so both send operations are blocked (deadlock situation).

2. There are enough system buffer to store the messages, so the communication operations can
be completed successfully.

It is preferable to avoid this kind of "unsafe" communications (i.e. where the completion depends on
the system buffering). We list some possible solutions below.

5.6.3 Some solutions to the "unsafe" problem

• Ordered send and receive. One of the easiest way to correct for dependence on buffering is
to order the sends and receives so that they are paired up. That is, the sends and receives are
ordered so that if one process is sending to another, the destination will do a receive that
matches the send before doing a send of its own:

Process 0 Process 1
Send(1) Send(0)
Recv(1) Recv(0)

• Combined send and receive. The approach of pairing sends and receives is effective but can
be difficult to implement when there are more processes (e.g. shifting data across a chain of
processes or across an irregular grid). An alternative is to use the MPI routine
MPI_Sendrecv:

9 We use here simplified (not MPI) notations for the blocking routines and only the destination and the source

parameters are shown.

152 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

Process 0 Process 1
Sendrecv(1,1) Sendrecv(0,0)

The exact C binding for MPI_Sendrecv is as follows:

int MPI_Sendrecv(void *sendbuf, int sendcount,
 MPI_Datatype sendtype,
 int dest, int sendtag,
 void *recvbuf, int recvcount,
 MPI_Datatype recvtype,
 int source, MPI_Datatype recvtag,
 MPI_Comm comm,
 MPI_Status *status)

It executes a blocking send and receive operation in one step. Both send and receive use the
same communicator, but possibly different tags. The send buffer and receive buffer must be
disjoint, and may have different lengths and datatypes. In our simple example, the actual
value of the dest and the source parameters are identical.

• Buffered sends. Instead of requiring the programmer to determine a safe ordering of the send
and receive operations, MPI allows the programmer to provide a buffer into which data can be
placed until it is delivered.

Process 0 Process 1
Attach_buffer() Attach_buffer()
Bsend(1) Bsend(0)
Recv(1) Recv(0)

The MPI routine MPI_Bsend uses the buffer provided by the programmer to store the
message if the matching receive has not posted yet. Otherwise, MPI_Bsend has ex- actly the
same syntax and semantic as MPI_Send does. The programmer can define an appropriate
buffer by calling MPI_Buffer_attach :

int MPI_Buffer_attach(void* buffer, int size)

The buffer is used only by messages sent by calling MPI_Bsend10, and it must be large
enough to hold all of the messages that must be sent before the matching receives are called.
Only one buffer can be attached to a process at a time.

• Non-blocking operations. Finally, we can avoid the possible deadlock situation by using non-
blocking communication operations instead of blocking ones. For example, we can use them
in the following arrangement:

Process 0 Process 1
Isend(1) Isend(0)
Irecv(1) Irecv(0)
Waitall Waitall

As none of the operations block until the processes reach the Waitall routines, the
communications can be completed regardless to the system buffering.

5.6.4 Communication modes

There are four different communication mode for send operation Standard (Send), Buffered (Bsend),
Synchronous (Ssend) and Ready (Rsend) (see Table 5-3). So far we use only the standard and the
buffered send routines. All four modes exist in both blocking and non-blocking forms. In the blocking
forms, return from the routine implies completion. In the non-blocking forms, all modes are tested for

10 Or with MPI_Bsend which is the non-blocking version of the buffered send and which has the same syntax as

MPI_Isend does.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

153

completion with the same MPI routines (MPI_Test, MPI_Wait, etc. see Sect. 5.6.1). One can get the
name of the non-blocking version of a blocking send routine by simple inserting the letter 'I' at the
front of the original name (see Table 5-3).

SEND mode Blocking Non-blocking
Standard MPI_Send MPI_Isend
Buffered MPI_Bsend MPI_Ibsend
Synchronous MPI_Ssend MPI_Issend
Ready MPI_Rsend MPI_Irsend

Table 5-3: MPI send routines

The standard, synchronous, ready and buffered sends differ only in one respect: how com- pletion
of the send depends on the receipt of the message. All of them have the same argument list. (The
arguments are described in Sect. 5.4). We give a short description of the different sends below.

• Standard send. (MPI_Send. MPI_Isend) The standard send complete when the buffer can be
reused (i.e. the message to be sent is copied out of the buffer). The completion may or may
not imply that the message has arrived at its destination. The message may instead lie "in the
communications network" (i.e. system buffers) for some time. As system buffering is outside
of the cope of MPI, the programmer should assume nothing about the existence or non-
existence of such system buffers (see Sect. 5.6.2).

• Buffered send. (MPI_Bsend,MPI_Ibsend) Buffered send guarantees to complete immedi-
ately, copying the message to the buffer provided by the programmer for later transmission if
necessary. (The details of the usage are described in Sect. 5.6.3.) The advantage over standard
send is predictability - the sender and receiver are guaranteed not to be syn- chronised even if
there is no system buffering at all. The disadvantage of buffered send is that the programmer
must explicitly attach enough buffer space for the program with calls to MPI_Buffer_attach.
Non-blocking buffered send has no advantage over blocking buffered send.

• Synchronous send. (MPI_Ssend, MPI_Issend) Synchronous send does not complete until the
matching receive has begun. (Unsafe programs become incorrect and usually deadlock within
an MPI_Ssend, see Sect 6.2.) If a process executing a blocking synchronous send is "ahead"
of the process executing the matching receive, then it will be idle until the receiving process
catches up. Similarly, if the sending process is executing a non- blocking synchronous send,
the completion test will not succeed until the receiving process catches up. Synchronous mode
can therefore be slower than standard mode, however, it is safer method of communication
because the communication network can never become overloaded with undeliverable
messages. It has the advantage over standard mode of being more predictable: a synchronous
send always synchronises the sender and receiver, whereas a standard send may or may not do
so.

• Ready send. (MPI_Rsend,MPI_Irsend) A ready send, like buffered send, completes im-
mediately. The communication is guaranteed to succeed normally if a matching receive is
already posted. However, unlike all other sends, if no matching receive has been posted, the
outcome is undefined (e.g. the message may be silently dropped, or an error occur, etc.). So
the programmer must guarantee that matching received has been posted. The idea is that by
avoiding the necessity for checking whether the matching receive is already posted and
avoiding buffering between the sender and the receiver, performance may be improved.
Use of ready mode is only safe if the logical control flow of the parallel program permits it.
For instance, in Figure 5-4, the synchronisation point - the blocking synchronous send in
Process A - ensures that the matching receive has already posted when Process A calls the
ready send function.
Non-blocking ready send has no advantage over blocking ready send.

While send operations have four different communication mode, there is only one mode for receives.
That is, messages sent by different kind of sends all must be received by the standard receive routines :
MPI_Recv or MPI_Irecv (see Table 5-4). The receive operations does not complete until the message
has arrived and placed into the buffer. The blocking receive (MPI_Recv see Sect. 5.4) does not return
until the communication operation has completed, while the non-blocking one (MPI_Irecv see Sect.

154 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

5.6.1) returns immediately and the programmer must test the completion by calling an appropriate MPI
function (e.g. MPI_Test, MPI_Wait, etc.).

Mode Blocking Non-blocking
Standard MPI_Recv MPI_Irecv

Table 5-4: MPI receive routines

5.6.5 Example : circulating in a ring

We ends the discussion about point-to-point communication by a simple example program called
"circulation". The aim of the program is to pass a set of numbers around a group of processes. Each
process sends its rank to the process rank+1. Each process also receives a rank from the process rank-
1. The messages are passed as if the processes are wrapped around, forming a ring, at the ends of the
group. The program should terminate once each process receives its own rank value back (i.e. the
messages have gone full circle). The source code is as follows:

#include "mpi.h"
#include <stdio.h>

int main(argc,argv)
int argc;
char *argv[];
{
 int myid, numprocs, message;
 MPI_Status recv_status, send_status;
 int next, last, in;
 MPI_Request request;
 int tag = 23; /* arbitrary value */

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 /* work out identity of neighbours */
 next = (myid + 1) % numprocs;
 last = (myid + numprocs - 1) % numprocs;
 in = -1;
 message = myid;

Figure 5-4: An example of safe use of ready mode.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

155

 /* messages circle until each process receives its own id back
again */

 while (in != myid) {
 MPI_Issend(&message, 1, MPI_INT, next, tag,
 MPI_COMM_WORLD, &request);
 MPI_Recv(&in, 1, MPI_INT, last, tag,
 MPI_COMM_WORLD, &recv_status);
 printf("Process %d received %d\n", myid, in);
 MPI_Wait(&request, &send_status);
 message = in;
 };
 MPI_Finalize();
}

When we run the compiled code with three processes the output should be something like this:

Process 0 received 2
Process 1 received 0
Process 2 received 1
Process 2 received 0
Process 0 received 1
Process 0 received 0
Process 1 received 2
Process 1 received 1
Process 2 received 2

First, the process finds out the number of processes and its own rank in the usual way

(MPI_Comm_size, MPI_Comm_rank). Then it calculates the ranks of its neighbours in the ring and
stores these values into the variables next and last. After that, the circulating of the rank numbers
begins inside a while loop. In each step, a message is sent to the process with rank next and a
message is received from the process with rank last. In the first step the own rank of the process is
sent while in the further steps the previously received value is sent. The non-blocking synchronous
send function (MPI_Issend) is used to send the messages. The completion of the send operation is
tested by the MPI_Wait function (see Sect. 5.6.1) after the blocking receive operation (MPI_Recv)
has completed. The while loop is finished when the process receives its own rank value from the
process last. Finally, the usual MPI_Finalize function is called to terminate the MPI environment.

5.7 Derived data types

In MPI, there is a type argument for all message send and receive operations. In Sect. 5.4 the
predefined MPI datatypes have been introduced which correspond to the C base datatypes. As there is
a count argument beside the type, we can send and receive arrays of these basic types. However, one
might wish to communicate a set of data that is neither an array nor an element of any one MPI basic
datatype, for example, coloumns of a matrix which is stored in row-wise manner, or a C struct, or
simple a set of general variables. It would be possible to send the data as several messages but this is
likely to be inefficient. MPI provides a better solution to this problem, by allowing the user to to
specify more general, mixed, and noncontiguous communication buffers at execution time. Before
introducing the basic mechanism of creating new MPI datatypes, we must understand how MPI
describes a general datatype.

In MPI, a datatype is an object that specifies a sequence of basic datatypes (see Table 5-1) and
displacements in bytes, of each of these datatypes. These displacements are taken to be relative to the
starting address of the buffer (see Sect. 5.4)that the datatype is describing. A datatype can be presented
as a sequence of pairs of basic types and displacements:

Typemap = {(type0; disp0); ...; (typen-1; dispn-1)}
MPI calls these sequence the typemap. For example, the type MPI_INT can be represented as the

typemap (int,0). The type signature of a datatype is just a list of the basic datatypes in a datatype:
Type signature = {type0; ...; typen-1}
The type signature describes what basic types make up an MPI datatype; it is the type signature

that controls how data items are interpreted when data is sent or received. In other words, it tell MPI
how to interpret the bits in a data buffer. The displacements tell MPI where to find the bits (measured

156 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

in bytes and relative to the starting address of the buffer). It is important to note, that the type signature
of the sending and receiving buffer must be the same in any kind of message transfer.

MPI defines some important attributes concerning datatypes, for instance, size and extent.
The size of a datatype is the number of bytes that the data takes up, i.e. the the total size of the data

in a message that would be created with this datatype. This is given by the MPI function:

int MPI_Type_size(MPI_Datatype datatype, int *size)

The first argument is the datatype, and the size is returned in the second argument.
The extent of a datatype is defined to be the span from the first byte to the last byte occupied by

entries in this datatype, rounded up to satisfy alignment requirements. The data alignment requirements
are up to the compiler - in our case the C compiler - so it can be varied. One of the most common
requirement is that the address of an item in bytes be multiple of the length of that items in bytes. For
example, if an int takes four bytes, then the address of an int must be evenly divisible by four. The
extent of a datatype is given by the MPI function:

int MPI_Type_extent(MPI_Datatype datatype, int *extent)

The first argument is the datatype, the extent is returned in the second one.

To illustrate the difference between the size and extent, consider the typemap: {(int; 0); (char; 4)}
on a computer that requires that int is be aligned on 4-byte boundaries. The size of this datatype is five
bytes: 4 + 1 = 5. The first byte is on the location 0, the last byte is on the location 4, so the extent
should be 4 - 0 = 4. However, the location of the last byte must be translated due to the alignment
requirement : the next int can be placed with displacement eight from the int in the typemap (see
Figure 5-5). This makes the extent of this typemap on the computer we are discussing eight.

The typemap is a completely general way of describing an arbitrary datatype. However, it may not
be convenient, particularly if the resulting typemap contains large numbers of entries. MPI provides a
number of ways to create new datatypes - derived datatypes - from existing ones, without explicitly
constructing the typemap.

Derived datatypes are created at run-time. This is done in two stages:

• Construct the datatype. New datatype definitions are built up from existing datatypes (either
derived or basic) using a call, or a recursive series of calls to datatype constructors (see
below).

• Commit the datatype. The new datatype is "committed" with a call to MPI_Type_commit.
It can then be used in any number of communications. The C binding is:

int MPI_Type_commit(MPI_Datatype *datatype)

5.7.1 Datatype constructors

In MPI, there are four basic types of datatype constructors:

1. Contiguous. The simplest datatype constructor is the MPI_Type_contiguous which allows
replication of a datatype into contiguous locations. C syntax:

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,
 MPI_Datatype *newtype)

Figure 5-5: Example of datatype extent : the next int can be placed

with displacement eight.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

157

newtype is the datatype obtained by concatenating count copies of oldtype. Concate- nation
is defined using extent as the size of the concatenated copies.

2. Vector. The function MPI_Type_vector is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is
obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype,
 MPI_Datatype *newtype)

The new datatype newtype consists of count blocks each of them consists of blocklength
copies of oldtype. The elements within each block have contiguous displacements, but there
is stride number of oldtype extent space between every block. To construct the particular
newtype depicted in Figure 5-6, MPI_Type_vector function should be called with the
following parameters :

• count=3

• blocklength=2

• stride=5

The vector constructer can be used to describe a column of a matrix which is stored in row-
wise manner. For example, if we have the matrix data: double data[IMAX][JMAX], we can
define an appropriate MPI derived datatype in the following way:

MPI_Type_vector(IMAX, 1, JMAX, MPI_DOUBLE,
 &col_type);
MPI_Type_commit(&col_type)

After that, we can send, for example, the second column of the matrix with the following code
:

MPI_Send(&data[0][1], 1, col_type, ...);

3. Indexed. The function MPI_Type_indexed allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block can
contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.

int MPI_Type_indexed(int count,
 int *array_of_blocklengths,
 int *array_of_displacements,
 MPI_Datatype oldtype,
 MPI_Datatype *newtype)

The newtype consists of count block, where the i-th block is the concatenation of ar-
ray_of_blocklengths[i] number of oldtype and has the displacement

Figure 5-6: Example : Construction of vector datatype.

158 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

array_of_displacements[i]. To construct the particular newtype depicted in Figure 5-7,
MPI_Type_indexed function should be called with the following parameters :

• count=3

• array_of_blocklengths=(3,1,4)

• array_of_displacements=(0,5,9)

4. Struct. MPI_Type_struct is the most general type constructor. It further generalizes the
previous one in that it allows each block to consist of replications of different datatypes.
Displacements are given in bytes.

int MPI_Type_struct(int count, int *array_of_blocklengths,
 MPI_Aint *array_of_displacements,
 MPI_Datatype *array_of_types,
 MPI_Datatype *newtype)

To construct the particular newtype depicted in Figure 5-8, MPI_Type_struct function
should be called with the following parameters :

• count=3

• array_of_blocklengths=(1,3,2)

• array_of_displacements=(0,10,16)

• array_of_types=(MPI_DOUBLE, MPI_CHAR, MPI_INT)

5.8 Collective communication

Collective communication is defined as communication operation which involves a group of processes
. An example may be a simple broadcast operation, where one process send the same data to all other
processes in a group (see Figure 5-9).

A collective operation is executed by having all processes in the group call the same com-
munication routine, with matching arguments. The message buffer is defined exactly the same way as
in the case of point-to-point communication, i.e. with the triple : (address,count,type).

Figure 5-7: Example : Construction of indexed datatype.

Figure 5-8: Example : Construction of struct datatype.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

159

One of the key arguments is a communicator that defines the group of participating processes and
provides a context for the operation. Collective communication calls may use the same communicators
as point-to-point communication; MPI guarantees that messages generated on behalf of collective
communication calls will not be confused with messages generated by point- to-point
communication.11

Several collective routines such as broadcast (see Figure 5-9) have a single originating (or
receiving) process. Such processes are called the root. Some arguments in the collective functions are
specified as "significant only at root," and are ignored for all participants except the root.

Comparing with point-to-point communication, differences include:

• All collective routine block until the operation has locally completed (i.e. the buffers can
safely be used). That is, collective communications have only blocking form, they have no
non-blocking versions.

• The amount of data sent must exactly match the amount of data specified by the receiver.

• No message tags are used.

Collective operations can be divided into three main groups: collective data movement, collective

computation and synchronisation.

5.8.1 Collective data movement

These routines are provided for rearranging data among processes in a group. Figure 5-10 depicts the
schemes of the possible rearrangements.

• Broadcast (see Figure 5-10)

int MPI_Bcast(void* buf, int count,
 MPI_Datatype datatype,
 int root, MPI_Comm comm)

MPI_Bcast broadcasts a message from the process with rank root to all processes of the
group, itself included. It must called by all members of group using the same arguments for
comm, root. The buf, count and datatype arguments are treated as in a point-to-point send on
the root and as in a point-to-point receive elsewhere. On return, the contents of root's
communication buffer has been copied to all processes.

• Gather, Scatter (see Figure 5-10) These routines also specify a root process and all processes
must specify the same root and communicator. The main difference from MPI_Bcast is that
the send and receive details are in general different and so must both be specified in the
argument lists. The C binding for the gather operation is:

11 It is as if each communicator had two contexts, one for point-to-point and one for collective communication.

Figure 5-9: Broadcast

160 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

int MPI_Gather(void* sendbuf, int sendcount,
 MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,
 int root, MPI_Comm comm)

Each process in comm (root process included) sends the contents of its send buffer defined
by the triple (sendbuf, sendcount, sendtype) to the process with rank root. The process root
concatenates the received data in process rank order in its receive buffer with starting address
recvbuf. That is, the data from process 0 is followed by the data from process 1, which is
followed by the data from process 2, etc. The argument recvcount indicates the number of
items received from each process - not the total number received. So the root receives
recvcount number of items from each processes, where the type of each item is recvtype. The
recv arguments are significant only the process with rank root.
Scatter is the "inverse" operation of gather:

int MPI_Scatter(void* sendbuf, int sendcount,
 MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,
 int root, MPI_Comm comm)

The process with rank root distributes the contents of send buffer with starting address
sendbuf among the processes in the group defined by the communicator comm. The contents
of the send buffer are split into segments each consisting of sendcount items of type
sendtype. The first segment goes to process 0, the second to process 1, etc. The send
arguments are significant only on process root.

• All-gather (see Figure 5-10)

Figure 5-10: Schematic representation of collective data movement in MPI. In each

case, each row of boxes represents data locations in one process. Thus, in the
broadcast, initially just the first process contains the data A0, but after after the

broadcast all process contain it.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

161

int MPI_Allgather(void* sendbuf, int sendcount,
 MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

MPI_Allgather can be thought of as MPI_Gather, but where all processes receive the result,
instead of just the root. That is, there is no root argument, and the recv arguments are
significant on every process in the group. Otherwise, the arguments have exactly the same
meanings as in the case of MPI_Gather.

• All-to-all (see Figure 5-10)

int MPI_Alltoall(void* sendbuf, int sendcount,
 MPI_Datatype sendtype,
 void* recvbuf, int recvcount,
 MPI_Datatype recvtype,
 MPI_Comm comm)

MPI_Alltoall is an extension of MPI_Allgather to the case where each process sends distinct
data to each of the receivers. The send buffer with starting address sendbuf are split into
segments each consisting of sendcount items of type sendtype. Each process send the first
segment of its send buffer to the process 0 which concatenates the received segments in rank
order in the receive buffer with starting address recvbuf. The second segment of the send
buffer is sent to the process 1 by each process, etc.

5.8.2 Collective computation

Collective computation operations are used to compute a value from data located different processes.
Typical computation can be global sum, minimum, maximum, etc. Figure 5-11 depicts a schematic
representation of the available collective computation patterns.

• Reduce. In a collective reduce operation, all the processes (in a group represented by a
communicator) contribute data which is combined using a binary operation. The C binding is:
int MPI_Reduce(void* operand, void* result,
 int count, MPI_Datatype datatype,
 MPI_Op op, int root, MPI_Comm comm)

Figure 5-11: Collective Computation Patterns

162 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

MPI_Reduce combines the operands stored in the operand buffer using operation op and
stores the result in the result buffer on the process root. The operand buffer is defined by the
arguments operand, count and datatype; the result buffer is defined by the arguments result,
count and datatype; both have the same number of elements, with the same type.
MPI_Reduce must be called by all processes in the communicator comm, and count,
datatype, and op must be the same on each process. The result argument is significant only
on the root process.
The argument op has the type MPI_Op, and it can take on one of the predefined values listed
in Table 5-5
. It is also possible to define additional operators. It is discussed later.

Operation Name Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical And
MPI_LOR Logical Or
MPI_LXOR Logical Exclusive Or
MPI_BAND Bitwise And
MPI_BOR Bitwise Or
MPI_BXOR Bitwise Exclusive Or
MPI_MAXLOC Maximum and Location of Maximum
MPI_MINLOC Minimum and Location of Minimum

Table 5-5: Predefined operators for collective computation.

• All-Reduce. Same as MPI_Reduce except that the result appears in the result buffer of all the
group members (see Figure 5-11).

int MPI_Allreduce(void* operand, void* result,
 int count,
 MPI_Datatype datatype,
 MPI_Op op, MPI_Comm comm)

Hence the root argument is omitted and the result buffer is significant at each process in the
group.

• Scan. MPI_Scan performs "parallel prefix" type operations (see Figure 5-11).

int MPI_Scan(void* operand, void* result,
 int count, MPI_Datatype datatype,
 MPI_Op op, MPI_Comm comm)

If process i holds the single value v(i) (in the operand buffer), the result on process i is v(1) op
v(2) op... op v(i) which is stored in the result buffer. The arguments are as for
MPI_Allreduce.

It is possible for the user to supply an arbitrary associative binary operator for the collective

computation routines. The MPI function:

int MPI_Op_create(MPI_User_function *function,
 int commute, MPI_Op *op)

binds the user-defined operation function to an op handle that can subsequently be used in
MPI_Reduce, MPI_Allreduce, and MPI_Scan. The user-defined operation is assumed to be
associative. If commute=true, then the operation should be both commutative and associative. The
type MPI_User_function is defined as follows:

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

163

typedef void MPI_User_function(void *invec,
 void *inoutvec,
 int *len,
 MPI_Datatype *datatype);

That is, the user defined function must have four arguments with types (void *, void *, int *,
MPI_Datatype *). The function is expected to perform the following computation :

for (i = 1 to len)
 inoutvec(i) = inoutvec(i) op invec(i)

So invec and inoutvec contain the two input operands, and the result must be stored in inoutvec when
the function returns. The datatype argument is point to the MPI data type which was passed to the
collective computation routine.

5.8.3 Synchronisation

The simplest routine of all the collective operations is MPI_Barrier:

int MPI_Barrier(MPI_Comm comm)

It involves no data at all, and simple blocks until all other members of the group (represented by
comm) have called it.

It can be very useful in such a situation, for example, when in one phase of a computation, all
processes participate in writing a file, but the file is to be used as input data for the next phase of the
computation. Therefore no process should proceed to the second phase until all processes have
completed phase one.

5.8.4 Example : calculation of the π

To illustrate the usage of collective data movement and collective computation operations let have a
look at the following example program, which computes the value of ss by numerical integration.
Since

1
1

1 0 1
42 0

1

0

1

+
= = − = =∫ x

dx xarctan()| arctan() arctan() arctan() ,π

the integral of the F(x) = 4 / (1 + x2) function in the [0; 1] interval is equal with π. To do this
integration numerically, the program divides the interval from 0 to 1 into some number n of
subintervals and approximate the integral in each subinterval with area of a rectangle. Larger values of
the parameter n will give us more accurate approximations of π. The parallel part of the algorithm
occurs as each process computes and adds up the areas for different subset of rectangles. The C source
code is as follows:

#include "mpi.h"
#include <math.h>

int main(argc,argv)
int argc;
char *argv[];
{
 int n, myid, numprocs, I;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 n = 0;

164 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

 if (myid == 0)
 { printf("Enter the number of intervals:");
 scanf("%d",&n);
 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs)
 { x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x*x));
 }
 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);

 if (myid == 0)
 { printf("pi is approximately %.16f, Error is
 %.16f\n",
 pi, fabs(pi - PI25DT));
 }
 MPI_Finalize();
}

First, each process call the usual three MPI functions to initiate the MPI library and to get the size

of the group and its own rank in the predefined communicator MPI_COMM_WORLD (see Sect.
5.3.8). Then the process with rank 0 obtains the value of n from the user. To transfer this value to
every process (i.e. to every process in the MPI_COMM_WORLD communicator), all processes
perform a broadcast operation (MPI_Bcast) with the appropriate arguments. Each process is able to
compute which rectangles it is responsible for from n, the total number of processes and its own rank.
They perform the necessary local computations inside a for loop. The local subresult is stored in the
variable mypi. At the end, the MPI reduce function is called by all of the processes to compute the
total sum from the distributed subresults. The MPI_Reduce store the result into the variable pi on
process 0. Process 0 prints the result and the error in the approximation to the standard output. Finally,
every process terminates the MPI environment by calling MPI_Finalize.

5.9 Convenient process naming : virtual topologies

A virtual topology is a mechanism for naming the processes in a communicator in a way that fits the
communication pattern better. The main aim of this is to makes subsequent code simpler. It may also
allow MPI to optimise communications (e.g. to optimise the mapping of the processes to physical
processors), however it is up to the MPI implementations.

For example, if our processes will communicate mainly with nearest neighbours after the fashion
of a two-dimensional grid (see Figure 5-12), we could create a virtual topology to reflect this fact. In
the figure, lines denote the main communication patterns, namely between neighbours. The numbers
represent the conceptual coordinates in the grid. This grid actually has a cyclic boundary condition in
one direction e.g. processes (0,0) and (0,3) are "connected". In MPI terms, the dimension
corresponding the rows of the grid is periodic.

What this gains us is access to convenient routines which, for instance, compute the rank of any
process given its coordinates in the grid or the ranks of the nearest neighbours of an arbitrary process
in the grid. The rank may then be used as an argument to the diverse send and receive MPI routines.

Although a virtual topology highlights the main communication patterns in a communicator by a
"connection", any process within the communicator can still communicate with any other.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

165

In MPI, a virtual topology is associated with a communicator. When a virtual topology is created
on an existing communicator, a new communicator is automatically created and returned to the user.
The user must use the new communicator rather than the old to use the virtual topology.

The user can configure the processes into one of two topology types:

• Cartesian topologies. Creating a Cartesian topology "connects" each process to its neigh-
bours in a virtual grid of arbitrarily many dimensions. Each dimension can be specified
independently as either periodic (wrap-around) or non-periodic. Functions are provided to
allow processes to be identified by Cartesian coordinates.

• General Graph topologies. MPI allows completely general graph virtual topologies, in
which a process may be "connected" to any number of other processes and the numbering is
arbitrary. Each process can retrieve the list of its neighbours in the graph and will normally
communicate only with those processes.

We will only describe the usage of Cartesian virtual topologies. The general graph topologies are

used in similar way, although of course there is no concept of coordinates ([MPI Forum94]).

5.9.1 Creating Cartesian virtual topologies

int MPI_Cart_create(MPI_Comm comm_old,
 int ndims, int *dims,
 int *periods, int reorder,
 MPI_Comm *comm_cart)

MPI_Cart_create takes an existing communicator comm_old and returns a new communi- cator
comm_cart with the virtual topology associated with it. The user must use this new communicator in
the subsequent MPI function calls when he wants to access the virtual grid. The Cartesian grid can be
of any dimension and may be periodic or not in any dimension, so tori, rings, three-dimensional grids,
etc. are all supported. The ndims argument contains the number of dimensions. The number of
processes in each dimension is specified in the array dims and the array periods is an array of TRUE
or FALSE values specifying whether that dimension has cyclic boundaries or not. The reorder
argument is an interesting one. It can be TRUE or FALSE:

• FALSE. In this case the process ranks in the new communicator (comm_cart) remain exactly
as in old_comm.

• TRUE. It allows the MPI to renumber the process ranks in the new communicator (possibly so
as to choose a good embedding of the virtual topology onto the physical machine).

The reorder parameter must be set FALSE if the data is already distributed to the processes,
otherwise, the TRUE value is preferable because it might increase the run-time performance.

MPI_Cart_create must be called by all processes in the communicator comm_old with the same
parameters.If the total size of the Cartesian grid is smaller than the size of the group of comm_old,
then some processes are returned MPI_COMM_NULL instead of the new communicator, which
implies that they do not participate in the new communicator (i.e. they are not members of the grid).
The call is erroneous if it specifies a grid that is larger than the group size.

Figure 5-12: Example: 2-D Cartesian Virtual Topology

166 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

For example, to get the virtual grid depicted in Figure 5-12, the MPI_Cart_create function must
be called with the following parameters:

• ndims=2

• dims=(4,3)

• periods=(1,0)

5.9.2 Identifying processes in Cartesian grid

After creating the new communicator which contains the appropriate topology informations, each
process may find out its own Cartesian coordinates by calling the MPI function MPI_Cart_coords,
which converts process rank12 to Cartesian coordinates:

int MPI_Cart_coords(MPI_Comm comm, int rank,
 int maxdims, int *coords)
The function returns the Cartesian coordinates belonging to the process rank in communicator comm,
where comm must come from a previous call of MPI_Cart_create. The maxdims argument specifies
the length of the array coords (i.e. it is usually equal with the ndims parameter used to create the grid).

The inverse function MPI_Cart_rank converts process grid coordinates to process rank.

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

It might be used to determine the rank of a particular process whose grid coordinates are known, in
order to send a message to it or receive a message from it.

As MPI_Cart_rank represents a general way to determine the rank of an arbitrary member of the
grid, MPI provides a more convenient routine to determine the rank of the sender and receiver
processes concerning a shift operation. Shift is a common operation, which involves a set of processes
passing data to each other in a chain-like fashion (or a circular fashion). Figure 5-13 depicts two shift
operations in a grid, the first one takes place in the first dimension, (which is a periodic one), while the
second shift is performed in the second dimension (which is a non-periodic one). The function :

int MPI_Cart_shift(MPI_Comm comm,
 int direction, int disp,
 int *rank_source, int *rank_dest)

does not actually What it does do is return the correct ranks for a shift which can then be included
directly as arguments to MPI send and receive routines13, to perform the shift. Suppose every process
in a grid (x; y) is to send a piece of data to its neighbour (x; y + 1). It will also receive a piece of data
from (x; y - 1). Each process can find the ranks of the processes it has to send data to and receive data

12 To find out its rank in the new communicator, a process may use the usual MPI_Comm_rank function (see

Sect. 5.3.8).
13 The MPI_Sendrecv function (see Sect. 5.6.3) is to be the most simple and natural way to perform shift

operation in a grid.

Figure 5-13: Shift operations in a 2-D Cartesian grid.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

167

from by calling MPI_Cart_shift with direction=1 (specifying the dimension in which the shift is to
occur) and disp=1 (specifying the distance of the shift).14 If the specified dimension is periodic, all
processes get valid ranks for rank_source and rank_dest by wrapping around at the ends. However,
for non-periodic dimensions, the special value MPI_PROC_NULL is returned if the corresponding
co-ordinates specify a point outside the valid process range. Any send or receive specifying
MPI_PROC_NULL as the rank of source or target process will return immediately successfully
without attempting any communication.

5.9.3 Cartesian partitioning

Quite often, a program with a Cartesian topology may need to perform reduction operations or other
collective communications only on rows or columns of the grid rather than the whole grid. Figure 5-14
depicts two simple examples. MPI_Cart_sub exists to create new communicators for sub-grids or
"slices" of a grid.
int MPI_Cart_sub(MPI_Comm comm,
 int *remain_dims, MPI_Comm *newcomm)

The ith entry of remain_dims specifies whether the ith dimension is kept in the (TRUE) or is dropped
(FALSE). Argument comm must be the communicator the original grid associated with. The new
communicator, containing the subgrid that includes the calling process, returns in the argument
newcomm.

For example, calling MPI_Cart_sub with remain_dims=(false,true) generates the necessary
row subcommunicators for the first case in Figure 5-14. If remain_dims=(true,false) we get the
subcommunicators for the second case in the figure.

However, partitioning mechanism can be applied in higher dimensions as well. If comm defines a
2x3x4 grid, and remain_dims = (TRUE, FALSE, TRUE), then MPI_Cart_sub will create three
communicators each with eight processes in a 2x4 grid.

5.9.4 Example : circulating in a ring using Cartesian topology

To illustrate the usage of the Cartesian virtual topology, we are modified the source code of the
example program described in Sect. 5.6.5. The modified version performs exactly the same task as the
the original one: shift operations are taken place in a ring until each process receives its "starting
value" back. (see Sect. 5.6.5 for more details, including the possible output of the program). The
modified code is as follows:

14 If the distance is 2, process (x; y) receives from (x; y - 2) and sends to (x; y + 2), etc.

Figure 5-14: Performing broadcast operation along the first and the second

dimension of a 2-D Cartesian grid.

168 ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

#include "mpi.h"
#define NUM_DIMS 1

int main(argc, argv)
int argc;
char **argv;
{
 int myid, numprocs;
 MPI_Status status;
 MPI_Comm comm_cart;
 int dims[NUM_DIMS], periods[NUM_DIMS];
 int reorder; int datain, dataout;
 int source, dest; /* ranks of neighbours */
 int tag = 57; /* arbitrary value */

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 /* set up parameters for MPI_Cart_create */
 dims[0] = numprocs;
 periods[0] = 1; /* true */
 reorder = 1; /* true */
 /* Make a new communicator with Cartesian topology */
 MPI_Cart_create(MPI_COMM_WORLD, NUM_DIMS,dims,
 periods, reorder,&comm_cart);
 /* Determine the ranks of the sending and
 receiving process for */
 /* shift of 1 in the 0th dimension */
 MPI_Cart_shift(comm_cart, 0, 1, &source, &dest);

 datain = -1;
 dataout = myid;
 while (datain != myid) {
 /* now do the actual data shift */
 MPI_Sendrecv(&dataout, 1, MPI_INT, dest, tag,
 &datain, 1, MPI_INT, source, tag,
 comm_cart, &status);
 printf("Process %d received %d"n", myid, datain);
 dataout = datain;
 }

 /* We're at the end */
 MPI_Comm_free(&comm_cart);
 MPI_Finalize();
}

Each process performs the following main steps :

• After initializing the MPI, finds out the total number of processes and the own rank
(MPI_Init, MPI_Comm_size, MPI_Comm_rank).

• Creates a new communicator (comm_cart) with a periodical one dimensional Cartesian grid
(i.e. a simple ring topology), by calling MPI_Cart_create.

• Determines the ranks of the sender (source) and receiver (dest) processes for the shift of 1 in
the Cartesian grid. Important to note that the communicator argument of MPI_Cart_shift has
the actual value comm_cart. (I.e. it would be errornous to pass MPI_COMM_WORLD as
actual parameter to this function because there is no topology information associated with the
default communicator.)

• MPI_Sendrecv (see Sect. 5.6.3) performs the shift operation inside a while loop : it
receives an integer value from source and store it into the variable datain and sends the value
of dataout to the process with rank destination. Note that comm_cart must be passed as

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

ΣΦΑΛΜΑ! ∆ΕΝ ΕΧΕΙ ΟΡΙΣΤΕΙ ΣΤΥΛ.

169

communicator argument to the sendrecv operation. After each shift, the process prints out a
message to standard output.

• When the process gets back its own rank value (i.e. each rank value has gone full circle), the
while loop ends and MPI_Finalize is called to terminate the MPI environment.

5.10 Topics not included

MPI is a large library. The Standard [MPI Forum94] is over 200 pages long and it defines more than
120 functions. Due to this fact, it is impossible to introduce all MPI facilities in such a short course.
Topics which are not covered here include :

• persistent communication

• error handling

• profiling interface

• tools for writing libraries

• inter-communicators

Interested readers should refer to [MPI Forum94], [GropLusk94].

5.11 The future of MPI

The MPI-2 forum with old and new participants has begun a follow-on series of meetings. The
following major topics are being considered:

• dynamic process management

• client/server

• real-time extensions

• "one-sided" communications (put/get, active messages)

• language bindings for C++ and Fortran-90

