

Ιοντισμός με πρόσκρουση ηλεκτρονίων - ΕΙ -

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Καθιερωμένη και επαρκώς μελετημένη τεχνική
- Μπορεί να εφαρμοστεί πρακτικά σε όλα τα πτητικά μόρια
- Επαναλήψιμο φάσμα μαζών
- Η θραυσματοποίηση χρησιμοποιείται για ταυτοποίηση δομής
- Αποτελεί τη βάση για την ανάπτυξη βιβλιοθηκών φασμάτων μαζών που περιέχουν το «αποτύπωμα» κάθε ένωσης

MEIONEKTHMATA:

- Το δείγμα πρέπει να είναι θερμικά σταθερό και επαρκώς πτητικό
- Το μοριακό ιόν μπορεί να απουσιάζει ή αν έχει χαμηλή αφθονία

ΕΦΑΡΜΟΓΗ:

§ Η πλέον χρησιμοποιούμενη πηγή ιόντων στην τεχνική GC-MS (Q ή IT) για τον προσδιορισμό μη πολικών μορίων χαμηλής μοριακής μάζας (< 1000 Da).</p>

Χημικός Ιοντισμός - CI -

Βομβαρδισμός αέριου αντιδραστηρίου (συχνά CH₄, NH₃ ή N₂) με e⁻ υψηλής ενέργειας με αποτέλεσμα το σχηματισμό ιόντων του αντιδραστηρίου. Τα αέρια μόρια (M) του δείγματος συγκρούονται με τα ιόντα του αντιδραστηρίου και τα ιοντίζουν με αντιδράσεις μεταφοράς πρωτονίων ή φορτίου, προσθήκης, ακόμα και πυρηνόφιλης υποκατάστασης.

Προϋπόθεση: ο λόγος [αντιδραστηρίου]/[δείγματος]= 103-104

CI Χαμηλής πίεσης: 10⁻³ – 10⁻⁴ Torr, ιδανική για GC-MS

CI Ατμοσφαιρικής πίεσης: APCI, ιδανική για LC-MS

Τὑ	ποι Χημιι	κού Ιοντισι	uou
ΜΕΤΑΦΟΡΑ ΦΟΓ	ΥΟΙΤ		
CH ₄ ⁺⁺⁺ +	RH 3⁄43⁄43⁄4®	$RH^{++} + CH_4$	M ^{+ ·}
ΜΕΤΑΦΟΡΑ ΠΡΩ	ΤΟΝΙΟΥ		
CH ₅ ⁺ +	RH 3⁄43⁄43⁄4®	RH ₂ ⁺ + CH ₄	[M + 1]⁺
$C_2H_5^+$ +	RH 3/43/43/4®	$RH_2^+ + C_2H_4$	
ΑΠΟΣΠΑΣΗ ΥΔΡ	ΥΟΙΔΙ		
CF ₃ ⁺ +	RH 3⁄43⁄43⁄4®	R⁺ + CF ₃ H	[M - 1] ⁺
$C_2H_5^+$ +	RH 3⁄43⁄43⁄4®	\mathbf{R}^+ + $\mathbf{C}_2\mathbf{H}_6$	
ΠΑΡΑΓΩΓΗ ΙΟΝΤ	ΊΚΩΝ ΣΥΜΠΛΟΚΩ	ΩΝ ΜΕΤΑ ΑΠΟ ΣΥΓΚ	ΡΟΥΣΗ
$C_{2}H_{5}^{+} +$	RH 3⁄43⁄43⁄4®	(C₂H₅:RH)⁺	[M + 29] ⁺
$C_{3}H_{5}^{+}$ +	RH 3⁄43⁄43⁄4®	(C ₃ H₅:RH)⁺	[M + 41] ⁺
	Interpret	tation of Mass Spectra	

- FAB -

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Γρήγορη και απλή τεχνική
- Καλή τεχνική ιοντισμού για ποικιλία μορίων
- Οι σχετικά χαμηλές θερμοκρασίες ιοντισμού επιτρέπουν τη μελέτη θερμικά ασταθών μορίων
- Απλά φάσματα, με μοριακά ιόντα και ισχυρά ιοντικά ρεύματα, οπότε είναι κατάλληλη για μετρήσεις MS υψηλής διακριτικής ικανότητας

MEIONEKTHMATA:

- Υψηλός χημικός θόρυβος υποβάθρου
- Ο αναλύτης πρέπει να είναι διαλυτός και σταθερός σε υγρή μήτρα
- Προβληματική λειτουργία σε χαμηλά m/z (<200 Da)

ΕΦΑΡΜΟΓΗ:

§ Χρησιμοποιείται με όργανα MS μαγνητικού τομέα για τον προσδιορισμό πολικών οργανικών (βιο)μορίων σχετικά μεγάλης μοριακής μάζας (>200 Da), καθώς και τη μελέτη υλικών (SIMS).

Ιοντισμός σε ατμοσφαιρική πίεση - ΑΡΙ -

 Ιοντισμός με Ηλεκτροψεκασμό (Electrospray Ionization, ESI)

Το υγρό δείγμα ψεκάζεται μέσα από τριχοειδή σωλήνα στον οποίο εφαρμόζεται υψηλή τάση (3-4 kV) και σχηματίζεται αερόλυμα φορτισμένων σταγονιδίων

• Χημικός ιοντισμός σε ατμοσφαιρική πίεση (Atmospheric Pressure CI, APCI)

Το υγρό δείγμα διέρχεται μέσα από ένα θερμαινόμενο τριχοειδή σωλήνα (450°C) και εξατμίζεται, παράγοντας αεριώδη μόρια. Πλησίον της εξόδου του σωλήνα, υπάρχει μια ακίδα σε υψηλή τάση που ιοντίζει τον αέριο διαλύτη ή το N₂ (N₂⁺), το οποίο με τη σειρά του ιοντίζει τα μόρια του αναλύτη στην αέρια φάση (μεταφορά φορτίου)

- ESI -
 ΠΛΕΟΝΕΚΤΗΜΑΤΑ: Τεχνική προσδιορισμού MB χωρίς περιορισμούς στη μάζα Καλή τεχνική ιοντισμού για ποικιλία μορίων (μετρίως πολικών και πολικών) Οι σχετικά χαμηλές θερμοκρασίες ιοντισμού επιτρέπουν τη μελέτη θερμικά ασταθών μορίων Καλή ευαισθησία, εύκολη ποσοτικοποίηση Συνδυάζεται με LC και τριχοειδή ηλεκτροφόρηση
 MEIONEKTHMATA: Απαραίτητα χαμηλή ροή κινητής φάσης Τα ιόντα του αναλύτη δημιουργούνται στην υγρή φάση Απόσβεση σήματος σε διαλύματα με άλατα και ανταγωνιστική μήτρα Σχηματισμός ιόντων προσθήκης (adduct ions)
ΕΦΑΡΜΟΓΗ: § Χρησιμοποιείται με όργανα LC-MS για τον προσδιορισμό μορίων μεγάλου εύρους μαζών (από μικρά πολικά μόρια έως μεγάλα βιομόρια)

- APCI -

ΠΛΕΟΝΕΚΤΗΜΑΤΑ:

- Σχηματισμός μοριακού ιόντος (πληροφορία για το MB)
- Εύκολη στη χρήση, με πολύ καλή επαναληψιμότητα
- Καλή ευαισθησία (συχνά καλύτερη του ESI)
- Μεγάλο εύρος στη ροή της κινητής φάσης (0,2 2 ml/min)
- Συνδυάζεται με LC και με συστήματα ESI

MEIONEKTHMATA:

- Ακατάλληλη για ενώσεις με MB>2000. Δεν σχηματίζει σειρές πολλαπλών φορτίων και δεν μπορεί να χρησιμοποιηθεί για προσδιορισμούς μεγάλων βιομορίων
- Οι σχετικά υψηλές θερμοκρασίες δεν επιτρέπουν τη μελέτη θερμικά ασταθών μορίων (θερμοδιάσπαση ευπαθών μορίων)
- Αυξημένος θόρυβος σε χαμηλές τιμές m/z
- Απαραίτητη η χρήση πτητικών ρυθμιστικών διαλυμάτων

ΕΦΑΡΜΟΓΗ:

§ Χρησιμοποιείται με όργανα LC-MS για τον προσδιορισμό μετρίως πολικών μορίων μικρών μοριακών μαζών

		ESI
	AFCI	LOI
Ιοντισμός:	Στην αέρια φάση	Στο διἁλυμα
Δυναμικό:	Εφαρμόζεται στη ακίδα	Εφαρμόζεται στον τριχοειδή σωλήνα
Θραυσματοποίηση:	Πιο «σκληρή» τεχνική, περισσότερα θραύσματα	«Μαλακός» ιοντισμός, λιγότερα θραύσματα
Αναλύτες:	MB<1000 Μἑτριας πολικότητας	Μικρά και μεγάλα μόρια, κυρίως πολικά
Ιόντα:	Μονοφορτισμένα	Μονοφορτισμένα και πολλαπλών φορτίων
Ροή κινητής φάσης	0,2-2 mL/min	0,001 – 1 mL/min (κυρίως <0,4 mL/min)

	LC	– MS		
Θετικός ιοντισμός				
 Βάσεις (-NH₂): 	[M+H]+	-	M+1	н
NH O	[M+NH	₄]+	M+18	, ÓY
N. CH ₃	[M+Na]	+	M+23	
	[M+K] ⁺		M+39	duct
Linuron	[M+Me	OH+H]+	M+32	ls)
	[M+CH	₃CN+H]+	M+42	Slin
Αρνητικός ιοντισμό	ς			
 Οξέα (-COOH, -C 	DH): [[M-H] ⁻		M-1
	[M+CH ₃ COO	H-H] [.]	M+59
H ₃ C OH	[M+HCOOH-	H] [.]	M+45
lbuprofen				

Adduct Ions Positive I	ESI	
Observed	Explanation	Mass
[M+H]+	Protonation	M + 1
[M+H+NH4]⁺	Mainly when using CH ₃ NH4	M + 1B
[M+H+nH₂O]*	M + H ₂ O adduct	M + 1 + 18×n
[M+H+H20]*	M + H ₂ O adduct	M + 1B
[M+H+iNa]+	M + Na adduct	M + 24
$[M \ast H \bullet K]^+$	M + K adduct.	M + 40
[M+H+CH2CN]+	Mainly when using acetonitrile	M + 42
[2M+H]*	Analyte dimerisation.	2×M + 1
M+H+CH ₂ CN]*	In presence of CH ₃ CN	M + 42
[M+H+CH3CN+nH2C]+	Adduct of CH_2CN and H_2O	Mi+42+18≍n
Adduct Ions Negative	ESI	
Observed	Explanation	Mass
 + −1] ⁻	Deprotonation	M - 1
[M-H-riH2O]*	Deprotonation and water	M - 1 - 18an
[M+CI]* / (M+35.5)	ion attachment	M + 35.5
[M-2H+Na]⁻	M + Na adduct	M + 21
M-H-COsh	Carbon dinicide lonses	M - 45

Κανονικοποιημένοι Συντελεστές Απόκρισης στις βέλτιστες Κ.Φ									
	ESI (+) ESI (-) APCI (+) APCI (-)								
Diuron	100	2	14	0					
Diuron-D6	93	n.a.	14	n.a.					
DCPMU	60	4	12	0					
DCPU	24	2	12	0					
DCA	26	0	4	0					
3 1 1 9 R A F	-3-84	1-22-275	The Law Ma						
Irgarol	100	0	3	0					
M1	76	0	3	0					
Atrazine-D5	66	0	5	0					

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΙΟΝΤΙΣΜΟΥ ΠΡΟΔΡΟΜΩΝ ΕΝΩΣΕΩΝ

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΙΟΝΤΙΣΜΟΥ ΠΡΟΔΡΟΜΩΝ ΕΝΩΣΕΩΝ

Σύγκριση ESI και APCI

Κανονικοποιημένοι Συντελεστές Απόκρισης στις βέλτιστες Κ.Φ.

	ESI (+)	ESI (-)	APCI (+)	APCI (-)
Diuron	100	2	14	0
Diuron-D6	93	n.a.	14	n.a.
DCPMU	60	4	12	0
DCPU	24	2	12	0
DCA	26	0	4	0
S. 6. 12.5				
Irgarol	100	0	3	0
M1	76	0	3	0
Atrazine-D5	66	0	5	0
n.a.: not applicable				

ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ (DESIGN OF EXPERIMENTS, DOE)

Συστηματικός τρόπος εκτέλεσης πειραμάτων που επιτρέπει την εξαγωγή του μέγιστου αριθμού πληροφοριών από τον ελάχιστο αριθμό δεδομένων.

Ø Σχεδιασμός σειράς πειραμάτων με καθορισμένες μεταβολές πολλαπλών μεταβλητών ταυτόχρονα

Ø Ανάλυση των δεδομένων → ταυτοποίηση:

- (α) μεταβλητών που επηρεάζουν σημαντικά τα αποτελέσματα
- (β) μεταβλητών που δεν επηρεάζουν τα αποτελέσματα
- (γ) παρουσίας αλληλεπιδράσεων, και
- (δ) βέλτιστων συνθηκών

Εργαλεία στατιστικής: επαναλαμβανόμενες μετρήσεις, συνθήκες τυχαιότητας, εκτέλεση

ομαδοποιημένων μετρήσεων

Αντικειμενικά συμπεράσματα

παρουσία σφαλμάτων, θορύβου και άγνωστων μεταβλητών

Παραγοντικός σχεδιασμός: 2 ή 3 επίπεδα για κάθε παράγοντα, k παράγοντες (αριθμός πειραμάτων 2^k ή 3^k)

ΒΕΛΤΙΣΤΟ	οποιής	Н ПАР	AMETP		I		
Πειράμ	ατα απά	όκρισης	; επιφάν	ειας			
• Κεντρικός Σύνθετος Σχεά	διασμός (Ο	CD): 24 +	· star, 36 π	ειράματα			
• Πρότυπο δ/μα μίγματος	• Πρότυπο δ/μα μίγματος 200 ng mL ⁻¹						
• Συνθήκες FIA							
 Καταγραφή σημάτων SII 	M						
 Μεταβλητές απόκρισης: 	 Μεταβλητές απόκρισης: Εμβαδά κορυφής [M+1]+ 						
			Επίπεδα				
Παράμετροι	-α	-1	0	+1	+α		
Απόσταση-Υ (in)	0,55	0,7	0,85	1,0	1,15		
Θερμοκρασία σωλήνα μεταφοράς ιόντων (°C)	270	300	330	360	390		
Ροή ξηραντικού αερίου (αυθ.μον.)	7	13	19	25	31		
Πίεση εκνεφωτικού αερίου(psi)	20	30	40	50	60		

٦	Τίεση σύγκρουσης: 1,6 m	Torr
	SRM μετάπτωση	Ενέργεια Σύγκρουσης (V)
Diuron	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17 15
Diuron-d6	239,0 → 78,3	20
DCPMU	$\begin{array}{c} 218,9 \to 127,0 \; (\text{Q}) \\ \to 161,9 \; (\text{C}) \end{array}$	28 14
DCPU	$\begin{array}{c} 205,0 \to 127,1 \ \text{(Q)} \\ \to 161,9 \ \text{(C)} \end{array}$	26 13
DCA	$162,0 \rightarrow 127,1 (Q) \ \rightarrow 109,1 (C)$	19 30
Irgarol	$\begin{array}{c} 254,0 \to 197,9 \ \text{(Q)} \\ \to 108,1 \ \text{(C)} \end{array}$	18 29
M1	$214,0 \rightarrow 158,0 \text{ (Q)} \\ \rightarrow 68.3 \text{ (C)}$	16 36

ΒΕΛΤΙΣΤΟΠΟΙΗΜΕΝΕΣ ΣΥΝΘΗΚΕΣ ΕSI(+) – MS/MS

ΣΥΝΘΗΚΕΣ ESI (+)

- Δυναμικό ESI: 4 KV
- Πίεση εκνεφωτικού αερίου: 60 psi
- Πίεση ξηραντικού αερίου: 27 μονάδες (8 L min⁻¹)
- Θερμοκρασία σωλήνα μεταφοράς ιόντων: 270°C
- Θέση ακροσωληνίου (0,55 in, D)
- Δυναμικό αποκορυφωτή: -10 V

ΣΥΝΘΗΚΕΣ MS/MS

- Πίεση αερίου σύγκρουσης: 1,6 mTorr
- Χρόνος σάρωσης: 0,02 s
- Φίλτρο χρωματογραφίας: 10 s

<mark>χμα Επιφάνειας Από</mark> ι	κρισης	(Respo	nse Su	face Ex	(perim
entral Composite Desi	gn: 2 ³ +	⊦ star p	oint, rot	atable,	orthog
ιράματα	0	•			
ວດກິນເຂົາການກ່າງ ແມ່ນ		ωής ιόντ	oc [M-1	1-	
		Ψ' 15 ' ' ' '	• 5 [···· ·	1	
			Levels		
Factors	-a	-1	Levels 0	+1	+a
Factors Extractor Voltage	-a 2	-1 3	Levels O 5	+1 6	+a 7
Factors Extractor Voltage RF Lens	-a 2 0.2	-1 3 0.3	Levels 0 5 0.5	+1 6 0.6	+a 7 0.7

	ΒΕΛΤΙΣΤΕΣ ΗΛΕ	ΤΙΜΕΣ ΠΑΡ ΚΤΡΟΨΕΚ	ΡΑΜΕΤΡΩΝ ΑΣΜΟΥ	ΤΕΛΙΚΕΣ ΤΙΜΕΣ ΠΑΡΑΜ	ΙΕΤΡΩΝ
	Extractor Voltage	RFLens	Desolvation Gas	ΛΕΙΤΟΥΡΓΙΑΣ ΗΛΕΚΤΡΟΨΕΚΑΣΜ	
FBZ	4.33	0.62	708.53	Capillary Voltage (kV)	3.00
MEN	4.27	0.20	902.00	Extractor voltage (V)	3.00
TLF	4.16	0.20	902.00	RF Lens (V)	0.7
CRP	2.48	0.53	902.00	Source Temperature (*C)	120 °C
NFL	4.63	0.48	834.75	Desolvation Temperature (°C)	300
FLU	2.45	0.68	902.00		0.00
VDP	2.00	0.70	902.00	Desolvation Gas (L/hr)	900
MLX	2.60	0.70	378.49	Cone Gas (Uhr)	50
DCL	2.65	0.70	302.00		

Ο ταυτόχρονος προσδιορισμός όλων των εξεταζόμενων ουσιών προϋποθέτει ένα συμβιβασμό μεταξύ των βέλτιστων τιμών, και αυτό γίνεται εις βάρος των ενώσεων με τη μεγαλύτερη ευαισθησία.

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΑΡCI Πειράματα διαλογής Πειραματικές παράμετροι: 1. Ταχύτητα ροής Κ.Φ. $(0,1 - 1 \text{ mL min}^1)$ 2. Θερμοκρασία εξάτμισης (300 - 450 °C)3. Πίεση εκνεφωτικού αερίου (20 - 40 psi)4. Ροή ξηραντικού αερίου $(5 - 25 \mu \text{ovάδες}, 1,5 - 7,5 \text{ L min}^1)$ 5. Θερμοκρασία σωλήνα μεταφοράς ιόντων (150 - 350 °C)6. Ρεύμα εκκένωσης $(3 - 8 \mu \text{A})$ • Πλήρης παραγοντικός σχεδιασμός : $2^6 + 2$, 2 τμημάτων, 68 πειράματα • Πρότυπο δ/μα μίγματος DCA – diuron – irgarol $(1 - 3 \mu \text{g mL}^1)$ • Συνθήκες FIA • Καταγραφή σημάτων SIM • Μεταβλητές απόκρισης: Εμβαδά κορυφής [M+1]⁺

C: Εμβαδόν	κορυφής SRI	Μ μετάπτωο Μ μετάπτωο	ης ιόντος επιβε	:βαίωσης οτικοποίησης	
a. Eppacor		(C/Q	(100) + SD (N	l = 6)	
	Πρότυπο 1-10 ng mL ^{.1}	Θ.Νερό 1 ng mL ⁻¹	Νερό βρύσης 10 ng L ⁻¹	Ίζημα 10 ng g ⁻¹	Μύδι 10 ng g ⁻¹
Irgarol	5,7 ± 0,4	$5{,}60\pm0{,}04$	$5,8\pm0,3$	$5,3\pm0,5$	$5,7\pm0,6$
M1	$6,5\pm0,7$	6,6±0,2	6,6±0,2	$7,0 \pm 0,4$	$7,5\pm0,9$
Diuron	9,0 ± 1,5	9,9±0,3	$6,2 \pm 1,4$	6,7 ± 3,0	8,1 ± 3,0
DCPMU	76,0 ± 6,7	76,2 ± 1,8	$76,3\pm7,1$	75,3 ± 12,4	74,0 ± 7,9
DCPU	41,1 ± 6,2	38,4 ± 0,9	35,6±6,9	$34,4\pm8,7$	45,6 ± 7,8
DCA	18,0 ± 0,8	$19,2\pm0,4$	$15,8 \pm 2,6$	$15,9 \pm 3,6$	14,8 ± 3,5
• Κοιτήρις	ο επιβεβαίωσ	ης για άγγι	υστα δείνυστο	r	

ΕΠΙΚΥΡΩΣΗ ΜΕΘΟΔΩΝ LC-ESI-MS/MS

ΣΥΜΠΕΡΑΣΜΑΤΑ (1/2)

Ø Επιτυχής ιοντισμός DCA με ESI(+): παρουσία ACN και HCOOH, απαιτούνται έντονες συνθήκες αποδιαλύτωσης, και εφαρμογή δυναμικού αποκορυφωτή λόγω ενώσεων προσθήκης με μόριο ACN.

Ø Βέλτιστη τεχνική ιοντισμού για τριαζίνες, φαινυλουρίες και διχλωροανιλίνη είναι το ESI(+).

Ø Απαραίτητος υγροχρωματογραφικός διαχωρισμός:

α) Μερική θραυσματοποίηση μητρικών ενώσεων στην πηγή
ιοντισμού και β) κοινό m/z της DCPU και της ένωσης προσθήκης με
ACN ισοτόπου της DCA και κοινού προϊόντος στις SRM
μεταπτώσεις.

ΣΥΜΠΕΡΑΣΜΑΤΑ (2/2)

Ø DOE ESI και APCI : Εξάρτηση της επίδραση των παραμέτρων από τη φύση της ουσίας προς ιοντισμό. Ύπαρξη συνδυασμένων αλληλεπιδράσεων.

Ø Απαραίτητη εξετάση της επίδρασης των παραμέτρων για κάθε μία προσδιοριζόμενη ουσία ή για κάθε ομάδα ουσιών με παρόμοια δομή στο συγκεκριμένο όργανο.

ΙΣΟΤΟΠΙΚΑ ΕΠΙΣΗΜΑΣΜΕΝΕΣ ΕΝΩΣΕΙΣ ΩΣ ΕΣΩΤΕΡΙΚΑ ΠΡΟΤΥΠΑ ΣΤΙΣ ΧΡΩΜΑΤΟΓΡΑΦΙΚΕΣ ΤΕΧΝΙΚΕΣ ΜΕ ΑΝΙΧΝΕΥΤΗ ΦΑΣΜΑΤΟΜΕΤΡΙΑΣ ΜΑΖΩΝ

Outline

- Μέθοδος εσωτερικού προτύπου
- Ισοτοπικά επισημασμένες ενώσεις ως εσωτερικά πρότυπα
- Παραδείγματα εκτίμησης αβεβαιότητας μετρήσεων με και χωρίς τη χρήση δευτεριωμένου εσωτερικού προτύπου σε τεχνικές MS

 Αναλυτικό σήμα: λόγος σήματος αναλύτη προς σήμα IS, RF=A_{analyte}/A_{IS}

ΜΕΘΟΔΟΣ ΕΣΩΤΕΡΙΚΟΥ ΠΡΟΤΥΠΟΥ

- Αντιστάθμιση τυχαίων και συστηματικών σφαλμάτων
 - -Οργανολογική αστάθεια
 - –Επίδραση μήτρας και της αναλυτικής πορείας
- ý ...αν γίνει σωστή επιλογή IS!

ΜΕΘΟΔΟΣ ΕΣΩΤΕΡΙΚΟΥ ΠΡΟΤΥΠΟΥ

ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΙS:

- Σταθερή και διαθέσιμη ένωση
- Απουσία από το δείγμα
- Προσομοιάζει τις φυσικοχημικές ιδιότητες του αναλύτη
- è Παρόμοια ευαισθησία
- Ε Παρόμοιοι χρόνοι ανάσχεσης, αν έχουμε την απαραίτητη εκλεκτικότητα στο σύστημα ανίχνευσης

	Εμβαδόν κορυφής ΒΡΑ	Λόγος RF
Εξίσωση καμπύλης εμβολιασμένων δειγμάτων γάλακτος	$AREA_{BPA} = -15642 + 3644$ C_{BPA}	$F = -0.0412 + 0.0073 C_{BP}$
Εξίσωση καμπύλης αναφοράς πρότυπων διαλυμάτων	$AREA_{BPA} = 19474 + 6291$ C_{BPA}	$F = 0,0008 + 0,0070 C_{BP}$
Λόγος κλίσεων × 100	Ανάκτηση ΒΡΑ % R _{ΒΡΑ} 58%	Σχετική ανάκτηση ΒΡΑ % R _F 104%

ΕΠΙΚΥΡΩΣΗ ΤΗΣ ΜΕΘΟΔΟΥ						
Ø Αβεβαιότητα - με χρήση εσωτερικού προτύπου						
	5 μg Kg ⁻¹	50 µg Kg ⁻¹	500 µg Kg ⁻¹			
% διευρυμένη σχετική αβεβαιότητα (Σ.Ε. 95%, k=2)	57	27	12			
Δ Αβεβαιότητα – χωρίς τη χρήση εσωτερικού προτύπου						
	5 µg Kg⁻¹	50 µg Kg⁻¹	500 µg Kg ⁻¹			
% διευρυμένη σχετική αβεβαιότητα (Σ.Ε. 95%, k=2)	108	119	128			

 ΕΠΙΚΥΡΩΣΗ ΤΗΣ ΜΕΘΟΔΟΥ Θ Έλεγχος καταλληλότητας συστήματος Διαχρονική σταθερότητα αναλυτικού σήματος πρότυπου διαλύματος 100 μg L⁻¹ (διάρκεια 2 μηνών) 					
	AREA BPA	AREA BPA-d ₁₆	F	C (µg L ⁻¹)	
%RSD	41,5	40,9	4,8	4,9	
Σημαντ αναλυτι προτύτ	ική βελτίω ικής παραι ιου	ση στην α μέτρου με	αναπαραγω τη χρήση	γιμότητα τη ι εσωτερικο	

 ΕΠΙΚΥΡΩΣΗ ΤΗΣ ΜΕΘΟΔΟΥ Τλεγχος καταλληλότητας συστήματος Διαχρονική σταθερότητα χρόνου ανάσχεσης και σχετικού χρόνου ανάσχεσης πρότυπου διαλύματος 100 μg L⁻¹ (διάρκεια 2 μηνών) 					
		t _R (BPA)	t _R (BPA-d ₁₆)	t _R (BPA)/ t _R (BPA-d ₁₆)	
	%RSD	3,3	3,2	0,2	
	Χρήση στοιχεία	σχετικού χρό ο επιβεβαίωσ	ονου ανάσχεση ης της παρουσ	ς ως επιπρόσθετο ίας της ΒΡΑ	

ΕΠΙΚΥΡΩΣΗ ΤΗΣ Μ	ΕΘΟΔΟΥ
Αβεβαιότητα - με χρήση εσωτερικοί	ύ προτύπου
	33 µg Kg ⁻¹
% διευρυμένη σχετική αβεβαιότητα (Σ.Ε. 95%, k=2)	32
Αποτέλεσμα	(33±11) µg Kg ⁻¹
βεβαιότητα – χωρίς τη χρήση εσω	τερικού προτύπο 33 μg Kg ⁻¹
% διευρυμένη σχετική αβεβαιότητα (Σ Ε. 95% k=2)	74
(L . L . 30 /0, K-L)	

ΣΥΓΚΡΙΣΗ ΕΣΩΤΕΡΙΚΩΝ ΠΡΟΤΥΠΩΝ					
νακτήσεις των ενώσεων R(%) από εμβολιασμένα δειγματα μπύρας και ντίστοιχα %RSD υπό συνθήκες επαναληψιμότητας. Συγκέντρω ιβολιασμού: 8 ng mL ⁻¹ των αναλυτών και 30 ng mL ⁻¹ για τα δύο εσωτερ <u>ρότυπα</u>					
R(%) (%RSD, N = 4)					
Εμβαδόν κορυφής	I _{ZAN}	I _D	нс		
104 (11)	106 (7,2)	97,8 (1	0)		
87,4 (4,3)	92,9 (2,6)	84,5 (8,	3)		
68,6 (5,6)	74,7 (3,9)	67,7 (8,	9)		
	ΚΡΙΣΗ ΕΣΩΤΕ ενώσεων R(%) από SD υπό συνθήκα ng mL ⁻¹ των αναλυτά R(% <u>Εμβαδόν</u> κορυφής 104 (11) 87,4 (4,3) 68,6 (5,6)	ΚΡΙΣΗ ΕΣΩΤΕΡΙΚΩΝ ΠΡΟ ενώσεων R(%) από εμβολιασμένα δε SD υπό συνθήκες επαναληψιμό ng mL ⁻¹ των αναλυτών και 30 ng mL ⁻¹ R(%) (%RSD, N = Εμβαδόν Izan 104 (11) 106 (7,2) 87,4 (4,3) 92,9 (2,6) 68,6 (5,6) 74,7 (3,9)	ΚΡΙΣΗ ΕΣΩΤΕΡΙΚΩΝ ΠΡΟΤΥΠΩΝ ενώσεων R(%) από εμβολιασμένα δείγματα μπύρας SD υπό συνθήκες επαναληψιμότητας. Συγκέν ng mL-1 των αναλυτών και 30 ng mL-1 για τα δύο εσα $R(%)$ (%RSD, N = 4) $Eμβαδόν κορυφής$ Izan104 (11)106 (7,2)97,8 (1)87,4 (4,3)92,9 (2,6)84,5 (8,68,6 (5,6)74,7 (3,9)67,7 (8,		

Συγγράμματα	
 D.A. Skoog, F.J. Holler, T.A. Nieman «Αρχές της Ενόργανης Ανάλυσης», Μτφ. Μ.Ι. Καραγιάννης, Κ.Η. Ευσταθίου, Ν. Χανιωτάκης, Εκδόσεις Κωσταράκη, Αθήνα, 2002: Κεφ. 20, 27Δ-3 και 28Γ-6 (σελ.859) 	
 J. Throck Watson and O. David Sparkman "Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation" 4th Edition, John Wiley & Sons, 2007 	
 E. De Hoffmann and V. Stroobant "Mass Spectrometry, Principles and Applications" 3rd Edition, John Wiley & Sons, 2007 K. Downard "Mass Spectrometry – A Foundation Course" 2nd Edition, RSC, 2007 	

Σχήματα

Τα σχήματα της παρουσίασης ήταν από τις παρακάτω πηγές:

- Ευγενική παραχώρηση σχημάτων από τον Prof. O. David Sparkman (από το βιβλίο του J. Throck Watson and O. David Sparkman "Introduction to Mass Spectrometry, 4th Edition: Instrumentation, Applications, and Strategies for Data Interpretation" John Wiley & Sons, 2007)
- D.A. Skoog, F.J. Holler, T.A. Nieman «Αρχές της Ενόργανης Ανάλυσης», Εκδόσεις Κωσταράκη, Αθήνα, 2002: Κεφ. 11 και 20
- W. Henderson, J. S. McIndoe, "Mass Spectrometry of Inorganic and Organometallic Compounds" Wiley, 2005
- Thermo "Quantum TSQ Training course", 2007
- CHROMacademy (<u>http://www.chromacademy.com/mass-spec-training.asp</u>)
- Ν. Μαραγκού, Διδακτορική Διατριβή, ΕΚΠΑ, 2010.

