System and Method Troubleshooting

Yuri Kazakevich

Seton Hall University

Troubleshooting (Αντιμετώπιση Προβλημάτων)

There is no standard troubleshooting procedure.

General Pattern:

- Locate the problem by ranking (κατάταξη) possible causes.
- Verify the presence of the most probable cause.
- If present fix the problem, otherwise verify the existence of the next possible cause.

First try to distinguish

Method vs. System Troubleshooting

System Parameters

- Flow stability
- Backpressure (οπισθοπίεση)
- Clogging (απόφραξη)
- Detector problems
- Injection suitability
- Injection volume
- Temperature

Method Parameters

- Flow rate
- Eluent (εκλουστικό) type
- Eluent composition
- pH
- pH modifier
 (τροποποιητής) (type)

3

- Injection volume
- Temperature
- Gradient profile

System Parameters

• Simple preliminary verification of system setup can save time.

Critical connections. Minimize tubing length

System Suitability

Available HPLC system set margins (περιθώρια) for column selection.

- 20 μl detector flow-cell incompatible with <3 mm I.D. columns
- 10 μ l sample loop incompatible with <1 mm I.D. columns.
- 0.2 µl micro-injector is useless for conventional columns.

Suitability Rule

Injection volume < Cell volume

Column Dead Volume ≈ 0.65 of the empty column volume

System Suitability

(Injection Volume)

Column: 150 x 4.6 mm (C18), $V_o = 1.7$ ml Efficiency: 10,000 t.p. Eluent: MeCN/Water 70/30 $V_{R(\text{benzene})}=2.2$ ml; $V_{R(\text{benz-a-pyrene})}=14.6$ ml

$$N = 16 \underbrace{\overset{\mathbf{a}}{\mathbf{b}}}_{\overset{\mathbf{b}}{\mathbf{b}}} \frac{\overset{\mathbf{b}}{\mathbf{b}}}{\overset{\mathbf{b}}{\mathbf{b}}}^{2} \qquad \mathbf{b} \qquad w_{b} = \frac{4V_{R}}{\sqrt{N}}$$

Effect of flow-cell volume and sampling rate

Response time (σταθερά απόκρισης) effect

7

HPLC System set up

- Minimize the volume and connections between autosampler, column, and detector.
- No guard (προστασία), no prefilter

Tubing & connections

1560	.0025" (65µm) ID	Natural	7,000 psi (483 bar)*
1561	.004" (100µm) ID	Black	7,000 psi (483 bar)*
1535	.005" (125µm) ID	Red	7,000 psi (483 bar)*
1562	.006" (150µm) ID	Purple	7,000 psi (483 bar)*
1536	.007" (175µm) ID	Yellow	7,000 psi (483 bar)*
1531	.010" (.25mm) ID	Natural	7,000 psi (483 bar)*
1531B	.010" (.25mm) ID	Blue	7,000 psi (483 bar)*
1565	.015" (.40mm) ID	Gray	7,000 psi (483 bar)*
1532	.020" (.50mm) ID	Orange	7,000 psi (483 bar)*

Mixing Chamber

Figure 3b

.65

Dimension X can range from .0001 to .1701 among various manufactorers.

Figure 2

9

Unions (Butt Joint = $\sigma \dot{\nu} \delta \epsilon \sigma \mu o \varsigma \alpha \rho \mu o \dot{\nu}$)

Critical Connections

Injector - Column, Column - Detector

Eluent Composition Effects on the Column Back Pressure

Guard Columns Στήλες Προστασίας

Purpose - trapping retentive impurities ($\pi\alpha\gamma$ ίδευση συγκρατούμενων ακαθαρσιών) Disadvantage - introduces extra-connections in critical zone

> Sample has 1% impurity. How many injections will kill 1% of column surface with 1% sample solution and 10 µl injection volume? 1% column surface ~ 2-3 m², it could adsorb ~ 0.1 μ Mole **300** injections will reach this level.

	Retention time		W1/2		Theortical Plates	
	Guard	No Guard	Guard	No Guard	Guard	No Guard
aniline	2.743	2.696	.1047	0.083	3802	5845
Methyl aniline	3.898	3.734	0.0865	0.0832	11250	11159
NN-dimethyl aniline	4.274	4.188	0.0952	0.0879	11166	12576

Autosampler – Column/Pump Connections

14

Waters system (Injection, Drawing Sample)

Waters system (Injection, Injecting Sample)

16

Sample Diluent (Αραιωτής) Effect

Incompatible solvents may cause sample precipitation and column clogging

Different eluent pH and composition may cause peak splitting 17

Column Length

- Column length is a compromise (συμβιβασμός) between the efficiency and backpressure
- Column efficiency is proportional to the column length
- Specific efficiency (# of particles per one plate) decreases with length increase.

Length	Particle	Efficiency,	Specific
[cm]	Dia. [um]	Ν	Efficiency, h
10	3	11111	3
10	5	10526	1.9
15	5	13636	2.2
25	5	15625	3.2
25	10	10000	2.5

Column Overloading Υπερφόρτωση Στήλης

Effect of pH on Aniline $(pK_b = 9,42, pK_a = 4,58)$ UV absorbance

The mobile phase pH at a constant organic composition may have an effect on an ionizable analyte's UV response. At 232 nm there is a decrease in aniline's absorbance as this analyte becomes progressively more ionized. A plot of the UV absorbance at a particular wavelength versus the ${}^{s}{}_{s}$ pH of the mobile phase will lead to a sigmoidal dependence. The inflection point corresponds to the analyte pK_a.

n--

400

35

Abs.

Chromatographic Conditions

Column: 15 cm x 0.46 cm Luna C18(2) Eluent: 90% Aqueous:10% MeCN Aqueous: 15 mM K_2 HPO₄•7H₂O adj. to $^{w}_{w}$ pH 1 - 9 with H₃PO₄ Flow rate: 1 ml/min Temp: 25°C

Column Equilibration

- Column equilibrates (εξισορροπεί) within 30 min in normal eluent composition range.
- Check retention time stability by injecting standard mixture 3
 4 times.
- Very high organic (>98%) or very high aqueous (>80%) need ~1 2 h equilibration at 1 ml/min.
- In pure water after ~20 h equilibration all analytes elute with void volume. "Chain collapse"? No. After 20 h of water pumping all organic removed from adsorbent pores. Water is not wetting the alkylated hydrophobic surface. There is no flow through adsorbent particles, only around.

Solvent Purity

How much solvent (0.1 ppm total impurity) will contaminate 10% of adsorbent surface?

Average column - $200 \text{ m}^2/\text{g}$ Assume molecular area of 100 Å^2

 $n_{(moles)} = \frac{S}{A \cdot N_A} = \frac{20m^2}{100 \text{\AA}^2 \cdot 6 \cdot 10^{23}} \approx 30$ mMole

Assume average 100 g/mole - 3 mg total accumulation this comes from **30 L** of solvent with 0.1 ppm total purity

Column has to be cleaned at least once a week

Gradient

High pressure vs. low pressure mixing
System dwell (νεκρός) volume effect

J.Dolan, *LC-GC* V.16 #1, 16

Column Cleaning

Solvent front (μέτωπο διαλύτη) disturbs phase equilibrium Release of trapped (παγιδευμένες) impurities

Method troubleshooting

• Problems are usually related to one of the following:

- 1. System
- 2. Column
- 3. Sample
- 4. Mobile Phase

System

- System-to-system compatibility
 - Differences in configuration (detector sequence, etc.)
 - Different dwell volume
 - Detector sensitivity always different
 - Wavelength accuracy
 - Bandwidth
 - Environment effects

Sample

Avoid particulate in the sample

Typical cause of inlet filter clogging

Filter	Sample filtration can change composition
Centrifuge	Usually cumbersome (δυσκίνητη)

Sample vials

Type of the vial cap and septa affect contamination and carry-over

Waters systems require 75% filling of 2 mL vial

Troubleshooting sequence

- Pump
 - Any reciprocal pattern (ανάποδη εικόνα) on chromatogram
 - Pressure fluctuations
 - Baseline drift (possible contamination of the solvent)
- Autosampler
 - Injection marks (baseline disturbance)
 - Cross-contamination
 - Vial fill-in (sample level)
- Detector
 - Response (baseline noise, drift, etc.)
 - Wavelength (bandwidth, accuracy, etc.)

Troubleshooting sequence

- First check is always the plumbing (σωληνώσεις) (leak, flow rate, pressure)
- Output (chromatogram) evaluation

Troubleshooting sequence

- Compare with previous results
- Peak tailing
- Retention shift
- Reverse elution

