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Introduction

Oestradiol and sex differences in stroke risk and outcome

17b-Oestradiol (E2) is a steroid hormone that is released into the

blood where it can exert trophic or regulatory effects on many dif-

ferent target tissues, such as the breast, ovary, uterus, bone and

brain (1). The major source of circulating E2 in the female is the

ovary, although other tissues such as adipose and brain have some

capacity for E2 synthesis as a result of expression of the E2 syn-

thesising enzyme, aromatase (2–4). E2 levels in the blood fluctuate

throughout the cycle in females, with peak circulating levels

observed at midcycle in humans, and late dioestrus II to pro-oes-

trus in rodents (1,5). Interestingly, stroke infarct size has been

shown to have an inverse correlation with serum E2 levels, with

smaller infarct size noted upon pro-oestrus in rats, when E2 levels

are highest (6,7). Administration of an oestrogen receptor antago-

nist, ICI 182 780, to intact female rats has also been shown to

result in an increase in infarct size following focal cerebral ischae-

mia (FCI), suggesting a role for endogenous E2 and oestrogen

receptors in mediating neuroprotection against cerebral ischaemia

(8). Sex differences in stroke have been reported in humans, with

studies focusing primarily on incidence, age of first stroke, and

stroke outcome (9–13). The studies suggest that women are ‘pro-

tected’ against stroke relative to men, at least until the years of

menopause, when E2 levels fall as a result of follicular depletion

and stroke incidence increases in women (9,11–13). Intriguingly,

stroke outcome in postmenopausal women has been shown to be

worse compared to males, with postmenopausal women having a

significantly higher disability and fatality rate compared to men

(9,10,12,13).

Although the ovary is a significant source of circulating E2 in

women, there is significant evidence that E2 can be produced in

extragonadal tissues as well. Of interest to this review, the

enzyme for production of E2 from androgens, aromatase, has

been shown to be expressed in several brain regions, including

the hypothalamus, cortex, and hippocampus in male and female

rats (2,14), humans (4,15) and monkeys (16). The roles and

importance of brain-derived E2 are currently not fully understood.

In vitro studies using aromatase inhibitors have suggested that

brain-derived E2 has a role in regulating connectivity ⁄ plasticity of

neurones (17,18). In addition, in vivo studies using aromatase
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17b-Oestradiol (E2) is an important hormone signal that regulates multiple tissues and functions

in the body. This review focuses on the neuroprotective actions of E2 in the brain against cere-

bral ischaemia and the potential underlying mechanisms. A particular focus of the review will

be on the role of E2 to attenuate NADPH oxidase activation, superoxide and reactive oxygen

species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuro-

protective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in

mediating E2 signalling and neuroprotective actions is also discussed. An additional subject is

the growing evidence indicating that periods of long-term oestrogen deprivation, such as those

occurring after menopause or surgical menopause, may lead to loss or attenuation of E2 signal-

ling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocam-

pus to ischaemic stress damage. These findings have important implications with respect to the

‘critical period hypothesis’, which proposes that oestrogen replacement must be initiated at peri-

menopause in humans to exert its beneficial cardiovascular and neural effects. The insights

gained from these various studies will prove valuable for guiding future directions in the field.
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knockout (KO) mice have shown that infarct volume is signifi-

cantly increased in the aromatase KO animals following FCI com-

pared to wild-type mice (19,20). Intriguingly, infarct size was

reported to be smaller in ovariectomised wild-type mice than in

the aromatase KO mice, suggesting that brain-derived E2 produc-

tion may have a role in neuroprotection (19). Aromatase expres-

sion has also been reported to increase in the peri-infarct region

at 24 h after FCI in the rat, with at least part of this increased

expression occurring in astrocytes (21). Our laboratory has also

observed that E2 increased aromatase expression in the hippo-

campal CA1 region at 48 h after global cerebral ischaemia (GCI)

(D. Brann and Q.G Zhang, unpublished data). Collectively, the

studies suggest that endogenous E2 production from gonadal and

extragonadal sources has a neuroprotective role in the brain

against cerebral ischaemia.

Oestrogen receptor (ER)-a mediates E2 neuroprotection
against cerebral ischaemia

Oestradiol is assumed to exert the majority of its biological actions

in the body via interaction with two primary oestrogen receptors:

ER-a and ER-b. The two receptors exhibit significant homology in

their structures, but display differential function, localisation and

pattern of expression in the brain (22,23). Both receptors are com-

posed of seven domains, bind E2 with high affinity, and they both

dimerise and utilise the classical oestrogen response elements in a

similar fashion. However, several differences do exist between ER-a
and ER-b because it has been shown that they contain different

ligand-binding domains, and each receptor is encoded by a differ-

ent gene. The receptors also signal differently at the AF-1 site in

the presence of E2, where E2 activates transcription at ER-a,

whereas it inhibits transcription at ER-b, respectively (24). ER-a and

ER-b are primarily localised in the nucleus of cells, although extra-

nuclear localisation has also been demonstrated in the cytoplasm

and membrane of cells and neurones (25–29), as is discussed in a

subsequent section. Thus, both receptors have been implicated to

mediate genomic signalling as well as nongenomic signalling in

cells (30–32). Another difference between ER-a and ER-b is that

they differ in their tissue distribution, with ER-a being expressed in

the breast, ovary, uterus, and brain (33–35), whereas ER-b is

expressed in the bone, heart, lungs, kidney, endothelial cells and

brain (33,36,37). In the brain, localisation studies have demon-

strated that ER-a is localised most densely in the hypothalamus,

hippocampus, and preoptic area, with moderate to light density in

the cerebral cortex (34,35). Conversely, ER-b localisation has been

documented predominantly in the cortex, throughout the hippo-

campus, in the olfactory bulb, septum, preoptic area, nucleus of

striata terminalis, amygdala, paraventricular hypothalamus, thala-

mus, ventral tegmental area, substantia nigra and cerebellum

(33,38,39).

With respect to which receptor is thought to mediate E2 neuro-

protection against cerebral ischaemia, the majority of the litera-

ture suggests that ER-a has the primary and critical mediator role

for E2-induced neuroprotection. In support of this contention, E2

neuroprotection against FCI has been shown to be lost in ER-a

KO mice but preserved in ER-b KO mice (40,41). In addition, anti-

sense knockdown studies confirmed a critical role for ER-a, but

not ER-b, in mediating E2 neuroprotection in the hippocampal

CA1 region in rats following GCI (42). Furthermore, administration

of a selective ER-a agonist, propyl pyrazole triol (PPT) has also

been shown to exert neuroprotection in the hippocampal CA1

region following GCI, and rescue the ischaemia-induced deficit in

long-term potentiation (43,44). E2 may achieve its neuroprotective

effects through a multitude of effects upon a variety of cell types

in the brain, including neurones, astrocytes, microglia and endo-

thelial cells (1). However, emerging evidence suggests that a direct

effect of E2 upon neurones mediated via neuronal ER-a is critical

for mediating the neuroprotective effect of E2 against FCI because

E2 neuroprotection has been shown to be lost in neurone-specific

ER-a KO mice, but not in microglia-specific ER-a KO mice (45).

The study did not assess E2 neuroprotective ability in astrocyte-

or endothelial-specific ER-a KO mice, and so no definitive conclu-

sion can be inferred about the role of these non-neuronal cell

types in E2 neuroprotection against cerebral ischaemia. There is a

significant literature suggesting that E2 can act on astrocytes to

influence release of neuroprotective factors such as growth fac-

tors, as reviewed previously (46–48). In addition, E2 and the ER-a
selective agonist, PPT, have been shown to directly enhance the

endothelial cell viability in vitro of immortalised mouse brain

endothelial cells following an ischaemic insult, suggesting that E2

could act directly on endothelial cells and exert protection of the

vasculature following ischaemia (49).

Although the majority of the literature appears to support a

critical role for ER-a in mediating E2 neuroprotective effects

against cerebral ischaemia, there are studies suggesting that ER-b
may have a neuroprotective role in certain situations. For example,

administration of a selective ER-b agonist, WAY 200070-3, has

been shown to exert neuroprotection in the rat hippocampal CA1

region following GCI (44), and another study found that the ER-b
agonist, DPN, reduced global cerebral ischaemia damage in the

mouse hippocampal CA1 region by 55% (50). In addition, the

plant phyto-oestrogen, genistein, has also been shown to exert

neuroprotection in the hippocampus against global cerebral

ischaemia, and this effect was blocked by treatment with an ER-b
specific antagonist (51). These studies suggest that exogenous

activation of ER-b can exert neuroprotection against cerebral

ischaemia. However, evidence of a role for ER-b in mediating

endogenous E2 neuroprotection against cerebral ischaemia is cur-

rently lacking because E2 is fully capable of exerting neuroprotec-

tion against cerebral ischaemia in ER-b KO mice (40,41).

Nevertheless, there is evidence that ER-b may have a role in

basal neuronal survival because it has been reported that there is

substantial neuronal loss in the brains of ER-b KO mice at

2 years of age compared to wild-type mice (52).

In addition, a novel, putative third ER, G-Protein-Coupled ER

(GPR30, also known as GPER1), has recently been described (53).

GPR30 is a seven transmembrane domain G-protein-coupled

receptor known to be primarily localised in the plasma mem-

brane and endoplasmic reticulum (53,54) of neurones in the

brain and is expressed in several brain regions, including the
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islands of calleja, striatum, hypothalamus, area postrema, nucleus

of the solitary tract, and hippocampus (54). Evidence supporting

the role of GPR30 in neuroprotection was obtained from studies

using a purported selective agonist for GPR30, G-1 (55,56). The

studies showed that G-1 pretreatment significantly attenuated

glutamate-induced neuronal cell death in hippocampal cell cul-

tures (55). G-1 has also been recently shown to exert neuropro-

tection against FCI in female mice (57). Although these studies

are intriguing, they rely on exogenous agonist studies and do

not demonstrate a conclusive role for GPR30 in mediating

endogenous E2 neuroprotective actions. More definitive conclu-

sions on the role of GPR30 in mediating E2 neuroprotection

must await the results from studies using GPR30 KO mice, as

well as selective GPR30 antagonist and knockdown approaches.

Finally, there is also evidence that nonfeminising oestrogen

analogues lacking affinity for oestrogen receptors can also exert

neuroprotection in cerebral ischaemia (58–61). As reviewed

recently by Yi et al. (61), eight different nonfeminising oestrogens

have been shown to be neuroprotective against cerebral ischae-

mia. These findings are very intriguing because nonfeminising oes-

trogens lacking ER affinity would be predicted to lack negative

side effects common to E2, such as stimulation of the breast and

uterus, as well as enhancement of blood clotting. Further work

has shown that oestrogen analogues with large bulky groups at

the 2 and ⁄ or 4 carbon of the phenolic A ring eliminate ER bind-

ing but enhance neuroprotective potency in cell culture screening

models (61). It is not known whether the nonfeminising oestro-

gens bind to GPR30 to mediate their effects. Further studies are

needed to address this interesting question. Further studies are

also needed to determine the mechanism of action underlying the

neuroprotective effects of nonfeminising oestrogens and to estab-

lish whether they might have efficacy for postmenopausal hor-

mone therapy.

Oestrogen regulation of reactive oxygen species and
oxidative stress

Reactive oxygen species (ROS), particularly superoxide, have been

implicated to play a key role in neuronal cell death following cere-

bral ischaemia (62–66). The superoxide anion radical (O�2 ) is the

product of a one electron reduction of oxygen and it is the precur-

sor of most ROS, including the highly toxic and damaging hydroxyl

ion and peroxynitrite (67,68). Although ROS are suggested to medi-

ate physiological processes at low concentrations, when they are

over-produced in pathological situations, they can be highly injuri-

ous to adjacent structures in cells and neurones, including lipid

membranes, DNA and proteins (63). It is well known that, following

the onset of either permanent or transient FCI, ROS increase signifi-

cantly in the cerebral cortex and other brain regions (1,62–66).

Along these lines, it has been shown that there is a marked steady

elevation of ROS in the penumbra (infarct border) of the parietal

cortex during a 3-h measurement period post ischaemia in perma-

nent cerebral ischaemia (64). Similarly, studies using a marker of

O�2 production, hydroethidine (HEt), have yielded a similar pattern

of increased O�2 oduction in the cortex of male mice and ovariecto-

mised female rats within 1–3 h of permanent cerebral ischaemia

(1,65,66). In addition, as shown in Fig. 1(A), work by our laboratory

has shown that O�2 production increases rapidly in the hippocampal

CA1 region following GCI in both male and female rats, with an

elevation occurring as early as 30 min after reperfusion and peak

levels observed at 3 h after reperfusion (42,69). As also shown in

Fig. 1(A), E2 treatment strongly attenuated the elevation of O�2 lev-

els in the hippocampal CA1 region following cerebral ischaemia,

which correlated with its neuroprotective effect (42). Further studies

showed that the E2 attenuation of O�2 levels was associated with a

dramatic attenuation of oxidative stress damage in the hippocampal

CA1 region at 24 h after cerebral ischaemia, as determined by
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Fig. 1. E2 attenuates superoxide production and oxidative damage in hippocampal CA1 after global cerebral ischaemia. Adult ovariectomised rats were treated

with 17b-oestradiol (E2) for 1 week prior to 10-min global cerebral ischaemia (GCI) and killed at various times after reperfusion. The E2 minipumps produced

serum levels of 10–15 pg ⁄ ml. (A) Superoxide production in the hippocampal CA1 region from sham, placebo (Pla) and E2-treated rats was measured using a lu-

minol-based photoemissions assay. (B–D) The effect of E2 on oxidative damage markers for lipid peroxidation (4-HNE) and DNA damage (8-OHdG) 1 day after

ischaemia. Note that E2 strongly decreased 4-HNE and 8-OHdG staining. Values are the mean � SE of four or five rats in each group and are expressed as

the fold change versus sham + Pla group. *P < 0.05 versus sham; #P < 0.05 versus Pla at the same time point. Reproduced with permission (42).
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measurement of oxidative damage markers for lipid peroxidation

(4-HNE) and DNA damage (8-OHdG) (Fig. 1B,C) (42). A similar E2

suppression of O�2 production was demonstrated in the cerebral

cortex following FCI (1). Below, we discuss how E2 may regulate

ROS generation in cerebral ischaemia with a particular focus on an

emerging key enzyme for O�2 production, NADPH oxidase.

E2 attenuates NADPH oxidase activation following global
cerebral ischaemia

In vitro studies have suggested that there may be three distinct

mechanisms for generating ROS in hippocampal and cortical neuro-

nes during hypoxia ⁄ reoxygenation (70). The studies provided evi-

dence that the mitochondria generates the initial ROS burst during

hypoxia, followed by xanthine oxidase during the delayed phase,

and ending with NADPH oxidase-generated ROS production in rep-

erfusion. It is well known that E2 can have beneficial effects upon

mitochondria to preserve mitochondrial function. These effects

include regulation ⁄ preservation of ATP generation, ROS production,

mitochondrial apoptotic factors and antioxidant mechanisms. Sev-

eral excellent reviews provide additional information on the effects

of E2 upon mitochondria (71,72). New emerging evidence suggests

that the membrane, via NADPH oxidase, may play an additional

critical role in ROS generation in neurones following cerebral

ischaemia. The NADPH oxidase enzyme is composed of key subunits

from the NOX family, whose primary job is to transport electrons

across biological membranes to reduce molecular oxygen to O�2
(73–76). The NOX family is composed of five isoforms (NOX1–

NOX5). Despite their similar structure and enzymatic function, NOX

family isoforms differ in their mechanism of activation. NOX1 activ-

ity requires the subunits p22phox, NOXO1 and NOXA1, and is Ras-

Related C3 Botulinum Toxin Substrate 1 (Rac1)-dependent, whereas

NOX 3 requires similar subunits for its activation, but is Rac1-inde-

pendent. NOX4 and NOX5 isoforms do not appear to require many

subunits for their activation because they are considered to be con-

stitutively active and Rac1-independent (73). The activation of

NOX2, the most studied and best characterised NOX isoform and a

major focus of our studies, involves interaction with the subunits

p22phox, p67phox, p40phox and p47phox subunits. In addition, the

GTPase, Rac1 has been shown to be critical for NOX2 activation

(69,73,75). NOX2 and p22phox are found primarily on the mem-

brane, in resting cells, existing in close association and stabilising

one another. Upon cell activation ⁄ stress, there is an exchange of

GDP for GTP on Rac1, a Rho GTPase, leading to its activation and

translocation to the membrane. Simultaneously, phosphorylation of

cytosolic p47phox allows for its binding with other membrane su-

bunits (p67phox and p40phox), leading to conformational changes

that allow interaction with p22phox on the membrane. This acti-

vates the NOX2 enzyme complex, which transports electrons from

cytoplasmic NADPH to oxygen and generates O�2 (73).

Localisation of the NOX family isoforms has been studied exten-

sively in many tissues throughout the body. In 2001, Lambeth and

his group documented strong NOX2 mRNA expression and faint

reverse transcriptase-polymerase chain reaction bands of NOX4 and

NOX5 in the brain (77). Moreover, further studies by our group and

others revealed NOX2 (42,69,78) and NOX4 (79) expression in the

hippocampus, as well as NOX2 localisation in the cerebral cortex

(78). Of the different NOX enzyme isoforms, the greatest evidence

to date implicates a critical role for NOX2 in ROS generation fol-

lowing cerebral ischaemia and the resultant oxidative stress dam-

age. In support of this contention, infarct volume was shown to be

significantly reduced in NOX2 KO mice compared to their wild-type

litter mates (80,81). Furthermore, the administration of the NADPH

oxidase inhibitor, apocynin was shown to reduce infarct size after

FCI (82) and significantly reduced neurological deficit score in mice,

thus achieving an improved behavioral cognitive outcome (80–82).

The ability of apocynin to reduce infarct volume, neurological

impairment and mortality was lost when it was administered in

NOX2 KO mice, which strongly suggests that its beneficial neuro-

protective effects are specifically a result of inhibition of NOX2

NADPH oxidase (81). Apocynin neuroprotection against cerebral

ischaemia was associated with reduced levels of apoptotic factors

and markers, such as Bax, Bcl-2 and terminal deoxynucleotidyl

transferase dUTP nick end labelling staining (83), suggesting that

NADPH oxidase activation plays a key role in the induction of

apoptosis following cerebral ischaemia. Additional work by our lab-

oratory showed that administration of a specific competitive NOX2

inhibitor, gp91ds-tat, significantly attenuated elevation of NADPH

oxidase activity and O�2 levels in the hippocampal CA1 region fol-

lowing GCI, and was strongly neuroprotective (42). This suggests

that NOX2 NADPH oxidase plays a significant role in the elevation

of O�2 and resultant neuronal damage in the hippocampus follow-

ing cerebral ischaemia. Further work by our laboratory and others

demonstrated that NOX2 is not only predominantly localised in

neurones in the hippocampus following cerebral ischaemia (42), but

also appears in microglia at later time-points after cerebral ischae-

mia (84). In situ O�2 determination using the hydroethidine method

also revealed O�2 elevation in neurones, with some occurring in mi-

croglia ⁄ macrophages, and little in endothelial cells in the cortex

and hippocampus at early time-points after cerebral ischaemia

(42,85). There is also some evidence that NOX2-derived OO�2 from

circulating lymphocytes that infiltrate the infract area may also

contribute to O�2 elevation at the infarct site (86).

As shown in Fig. 2, work by our laboratory showed that NADPH

oxidase activity increases rapidly in the hippocampal CA1 region fol-

lowing GCI in ovariectomised female rats, with peak levels observed

at 3 h after reperfusion (42). Note that the pattern of NADPH oxidase

activation following cerebral ischaemia is similar to that we observed

for O�2 elevation. As also shown in Fig. 2, E2 treatment strongly atten-

uated the elevation of NADPH oxidase activity in the hippocampal

CA1 region following cerebral ischaemia, which correlated with its

suppression of O�2 levels and its neuroprotective effect (42). As shown

in Fig. 3, the ability of E2 to exert neuroprotection and attenuate the

elevation of NADPH oxidase activity and O�2 in the hippocampal CA1

region after global cerebral ischaemia was lost in animals in which

ER-a was knocked by antisense oligonucleotides, but was preserved

in ER-b antisense knockdown animals (Fig. 3) (42). This suggests that

the neuroprotective and antioxidant effects of E2 in global cerebral

ischaemia are primarily mediated by ER-a. We further showed that E2

inhibited activation of the GTPase, Rac1, in an Akt-dependent manner
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following cerebral ischaemia, which is critical for NOX2 NADPH oxi-

dase activation (42). Additional work showed that administration of a

Rac1 inhibitor markedly attenuated NADPH oxidase and superoxide

generation in the hippocampal CA1 region following cerebral ischae-

mia and was neuroprotective and preserved cognitive function (69).

Oestrogen extranuclear receptor signalling and
E2 neuroprotection

It has been predominantly considered that E2 neuroprotection in

the brain is mediated principally by the ‘classical’ nuclear ER-medi-

ated genomic signalling pathway, which involves E2 interaction with

nuclear ER and regulation of the transcription of various genes that

mediate neuroprotection. For example, E2 has been shown to

increase the expression of the anti-apoptotic gene, bcl-2, in the is-

chaemic penumbra following FCI and GCI (87). E2 also increases

bcl-2 in vitro in rat hippocampal neurones and human NT2 neuro-

nes (88,89), whereas it inhibits expression of pro-apoptotic BAD

(bcl-2-antagonist of cell death) (87–90). Additionally, E2 enhances

expression of the anti-apoptotic pro-survival factor, survivin in the

hippocampus CA1 following GCI, which facilitates neuronal survival

(91). E2 has also been shown to enhance expression of brain-

derived neurotrophic factor (BDNF) in the brain, which has been

implicated as a neuroprotective factor and to be important for syn-

aptic plasticity, learning and memory (92,93).

In addition to genomic signalling, there is increasing evidence

that rapid nongenomic signalling via membrane localised extranu-

clear ER may also play a role in mediating E2 neuroprotective

effects in the brain (30,94,95). Along these lines, several studies

have shown that the rapid activation of extracellular signal-regu-

lated kinases 1,2 (ERKs) by E2 is critical for its neuroprotective

effects because the administration of a mitogen-activated protein

kinase kinase (MEK) inhibitor blocks E2 neuroprotection in neurones

in vitro (94–96). Furthermore, E2-induced ERK activation in the CA1

region after GCI, which is critical for its neuroprotective effects

because treatment with a MEK inhibitor blocked E2-induced ERK

activation and E2 neuroprotection in the hippocampus (97). Simi-

larly, a role for the pro-survival serine kinase Akt in E2 neuroprotec-

tion has been implicated because E2 rapidly up-regulates Akt

activation in cortical neurones in vitro (98) and in the hippocampus

CA1 in vivo following GCI (99), whereas treatment with a phospho-

inositide 3-kinase inhibitor attenuates the neuroprotective effects

of E2 both in vitro and in vivo (98,99). In addition, we recently

demonstrated that E2 attenuates the rapid activation of the pro-

apoptotic signalling kinase, c-Jun N-terminal kinase in the hippo-

campal CA1 region after GCI (91). As a whole, these findings sug-

gest that E2-induced rapid nongenomic signalling may play a

critical role in E2 neuroprotection.

However, because the above studies principally used E2, which

can activate both extranuclear and nuclear oestrogen receptors, it

has been difficult to distinguish the importance and contribution of

extranuclear receptor-mediated signalling in E2 neuroprotective

effects. To address this issue, we employed two E2 conjugates,

E2-bovine serum albumin (BSA) conjugate (100–102) and the newer

E2 dendrimer conjugate (EDC) (103), which, as a result of their size

and charge, cannot enter the cell nucleus. EDC and E2-BSA retain

their ability to induce rapid extranuclear-mediated nongenomic sig-

nalling, but lack significant nuclear ER-mediated genomic signalling

ability as a result of their inability to enter the cell nucleus and

interact with nuclear ER (102,103). Using FITC-labelled EDC and

E2-BSA, we demonstrated that following i.c.v. injection in the lateral

ventricle, the compounds are heavily localised in the hippocampal

CA1 region and display a membrane ⁄ cytoplasmic localisation with-

out any appearance of nuclear localisation (104). The results of the

study further revealed that EDC and E2-BSA administered i.c.v. rap-

idly activates ERK, Akt and CREB signalling pathways in the hippo-

campus, enhances levels of the CREB transcriptional target, BDNF,

strongly protects the hippocampal CA1 region against neuronal cell

death, and significantly improves hippocampal-dependent cognitive

function in the Morris water maze following GCI (104). The effects

required oestrogen receptor mediation because they were blocked

by administration of the oestrogen receptor antagonist, ICI182,780.

In addition, further studies showed that EDC attenuated Rac1 and

NADPH oxidase activation and elevation of O�2 in the hippocampal

CA1 region after cerebral ischaemia, and that its effects involved

activation of the pro-survival kinase, Akt (42). The results of these

studies thus provides important new evidence supporting an impor-

tant role for extranuclear oestrogen receptor activation in oestro-

gen-induced neuroprotection and improved functional cognitive

outcome following GCI, and suggests that ERK-Akt-CREB-BDNF sig-

nalling is an important component mediating extranuclear oestro-

gen receptor beneficial neural effects. It should be noted that, in

addition to the proposed neuroprotective role of ERK1 ⁄ 2 activation
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Fig. 2. 17b-Oestradiol (E2) attenuates NADPH oxidase activity in hippocam-

pal CA1 after global cerebral ischaemia. Adult ovariectomised rats were trea-

ted with E2 for 1 week prior to 10-min global cerebral ischaemia (GCI) and

killed at various times after reperfusion. The E2 minipumps produced serum

levels of 10–15 pg ⁄ ml. NADPH oxidase activity in the hippocampal CA1

region from sham, placebo (Pla) and E2-treated rats was measured using a

lucigenin-based photoemissions assay. Values are the mean � SE of four or

five rats in each group and are expressed as the fold change versus

sham + Pla group. *P < 0.05 versus sham; #P < 0.05 versus Pla at the same

time point. Reproduced with permission (42).
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in cerebral ischaemia, there is also evidence for a pro-death role of

ERK activation. For example, administration of MEK inhibitors has

been shown to significantly reduce ischaemic damage to the brain

following GCI or FCI (105–107), which suggests a neurodegenera-

tive role for ERK activation after cerebral ischaemia. It has been

postulated that enhanced ERK1 ⁄ 2 activation may send a neuropro-

tective signal that involves the eventual down-regulation of its own

activation, thereby preventing a prolonged elevation of ERK. How-

ever, in our studies in vivo in the GCI model, we found that ERK

activation in the vehicle-treated rat is biphasic, with an early eleva-

tion at 10 and 30 min after reperfusion, a fall to control levels at 3

and 6 h after reperfusion, followed by a secondary elevation at

24 h after reperfusion (104). Interestingly, acute EDC treatment sig-

nificantly elevated ERK activation at 10 min, 30 min, and 3 and 6 h

post-reperfusion compared to the vehicle-treated group, although it

did not enhance the secondary elevation that occurred at 24 h

after reperfusion. Hence, in our studies, acute oestrogen analogue

treatment enhanced and prolonged ERK activation in vivo in the

hippocampal CA1 region following GCI. Thus, our studies did not

show an oestrogen-induced reduction of ERK activation that would

fit the proposed model of ERK activation leading to its own inacti-

vation. However, our study only examined up to 24 h after GCI,

and thus studies at more prolonged timepoints after GCI may be

needed to determine whether there is a subsequent down-regula-

tion of ERK at later timepoints. The apparently contradictory ‘good

role’ versus ‘bad role’ of ERK activation in cerebral ischaemia could

depend on many factors, including (i) cell type of induction (neu-

rone, glia or endothelial cell); (ii) pattern ⁄ duration of induction

(acute, biphasic, chronic); and (iii) subcellular localisation of ERK

(nucleus versus cytoplasm). For an elegant discussion and treatment

of this complex subject, an excellent review is provided by Sawe

et al. (108) on the dual role of ERK activation in cerebral ischaemia.

Currently, it is unclear which extranuclear oestrogen receptor

mediates the rapid effects of E2 or E2 conjugates in neurones. Pre-

vious work has shown that ER-a and ER-b can exist as dimers in

the plasma membrane of cells (32,109), and that COS-7 cells engi-
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neered to express ER-a and ER-b display localisation of approxi-

mately 2–5% of ER-a and ER-b protein to the plasma membrane

(102). These studies suggest that classical ERs can be targeted to

the plasma membrane. Key mechanisms for targeting ER-a and

ER-b to the plasma membrane include palmitoylation of ER-a and

ER-b, and interaction of ERs with the scaffold protein, caveolin-1

(110,111). Although these studies were conducted in non-neuronal

cells, numerous studies have confirmed the presence of both ER-a
and ER-b at the plasma membrane of neurones in various brain

regions including the hippocampus, and at other extranuclear sites,

such as in dendrites and spines (25,28,112–116). Furthermore,

membrane localisation of ER-a and ER-b has been demonstrated in

glia cells in different brain regions (113,115,117,118), and glia cells

have also been implicated as potentially participating in mediating

oestrogen neuroprotection via the release of growth factors and

neuroactive steroids (48,119,120).

Finally, there is evidence that oestrogen extranuclear receptor-

induced nongenomic signalling can cross-talk to the nucleus to

effect genomic signalling. Along these lines, Madak-Erdogan et al.

(121) have demonstrated that EDC can regulate gene expression in

cells in vitro and that the effect does not involve interaction with

or activation of nuclear ER genomic signalling. Rather, EDC effected

changes in gene expression via its activation of rapid ERK and Src

kinase signalling, which can regulate phosphorylation of transcrip-

tion factors, histones and other factors, and thereby modulate gene

transcription. The study further showed that EDC was incapable of

recruiting nuclear ER-a to oestrogen responsive regions of genes,

whereas ER-a recruitment by E2 was very effective. Thus, EDC non-

genomic signalling can induce genomic signalling that is indepen-

dent of nuclear ER. Intriguingly, previous studies have also

demonstrated that nongenomic signalling by E2 in the hypothala-

mus can actually potentiate E2 genomic actions to induce lordorsis

behavior (122,123), suggesting that rapid effects of E2 may also

modulate genomic effects of E2. Interestingly, our own findings

revealed that EDC and E2-BSA enhanced phosphorylation of the

transcription factor, CREB, in a rapid fashion following reperfusion,

and that this effect is ERK- and Akt-dependent. Among the best

known CREB transcriptional targets is the growth factor, BDNF,

and, intriguingly, our study also demonstrated it to be elevated by

EDC. This finding raises the possibility that EDC activation of extra-

nuclear oestrogen receptors may involve a nongenomic to genomic

signalling cascade via kinase-induced activation of the transcription

factor, CREB. As a whole, the studies suggest that both extranuclear

and nuclear receptor signalling mediates E2 neuroprotective actions

and that there may be cross-talk between the two signalling

pathways.

Long-term E2 deprivation alters the sensitivity of the
brain to E2

Basic science and clinical observation studies have provided evi-

dence of a beneficial effect of E2 upon cardiovascular disease, neu-

roprotection and neurodegenerative diseases such as stroke and

Alzheimer’s disease (1,124–128). However, the Women’s Health Ini-

tiative (WHI) surprisingly failed to observe a protective effect of

hormone replacement therapy upon the cardiovascular and neural

system and, in fact, reported a small, but significant increase in risk

for stroke and dementia (129–131). The average age of subjects in

the WHI study was 63 years, which is far past the onset of meno-

pause. It has been suggested that there may be a ‘critical period’

for beneficial protective effect of E2 upon the brain, and that oes-

trogen may need to be administered at peri-menopause or earlier

to observe a beneficial effect upon the cardiovascular and neural

system (132–134).

In support of a ‘critical period’ hypothesis for E2 beneficial effects

in the brain, a significant body of work has emerged which has

shown in animal and human studies that long-term E2 deprivation

(LTED) (long-term ovariectomy) leads to a loss of many E2 effects

in the brain, such as neuroprotection, synaptic plasticity and cogni-

tive function, and enhances the risk of neurological diseases and

mortality. As shown in Table 1, LTED has also been shown to lead

to a loss of the ability of E2 to enhance long-term potentiation,

spine density, attention processes and working memory, as well as

exert vascular protective actions in rodents (135–138). In addition,

Table 1. Neural and Cardiovascular Effects of Long-Term Ovariectomy.

Group Species Tissue Effect

Rocca et al. 2007 (141) Human Brain › Risk cognitive impairment and dementia

Rocca et al. 2008b (142) Human Brain › Risk Parkinson’s disease

Rocca et al. 2008a (140) Human Brain › Risk depression and anxiety

Rocca et al. 2009 (139) Human Brain › Mortality for neurological and mental diseases

Suzuki et al. 2007 (144) Rat Cortex Loss of E2 neuroprotective effect

Zhang et al. 2009 (42) Rat Hippocampus Loss of E2 neuroprotection; fl ERa; › ischaemic damage to hippocampal CA3 region

Daniel et al. 2006 (137) Rat Cortex and hippocampus Loss of E2 enhancement of working memory

Bohacek & Daniel 2010 (138) Rat Cortex and hippocampus Loss of E2 enhancement of attention processes

Smith et al. 2010 (136) Rat Hippocampus Loss of E2 enhancement of spine density and long-term potentiation

Wu et al. 2011 (135) Rat Hippocampus fl Intrinsic excitability and loss of E2 sensitivity

Pinna et al. 2008 (146) Rat Aorta fl ERa and loss of E2 protective vascular actions

Jesmin et al. 2003 (145) Rat Cerebral vessels fl ERa and ERb; fl cerebral capillary density

E2, 17b-oestradiol; ER, oestrogen receptor.
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surgical menopause (long-term ovariectomy) in humans has been

shown to increase cognitive decline, dementia, Parkinson’s disease,

depression and mortality as a result of neurological and mental dis-

eases (139–142) (Table 1). Intriguingly, E2 replacement has been

shown to reverse these effects in surgical menopausal subjects,

indicating it is the loss of E2 that leads to these increased risks and

negative outcomes (124,143). Recent work by our group and other

has shown that E2 neuroprotection in animal models of FCI and

GCI is lost following LTED (42,144). Along these lines, Fig. 4(A)

shows that E2 treatment administrated after a 10-week period of

E2 deprivation (ovariectomy) was no longer able to exert neuropro-

tection against GCI. Interestingly, the uterus was still responsive to

E2, as demonstrated by a robust uterotrophic response to E2 in the

LTED animals (Fig. 4B). Thus, there was a tissue-dependent loss of

sensitivity to E2 in the LTED animals. We thus examined whether

the loss of E2 sensitivity in the hippocampal CA1 region could be

the result of an alteration in oestrogen receptor levels. As shown in

Fig. 4(C,D), western blot analysis revealed a dramatic attenuation of

ER-a, but not ER-b protein levels in the hippocampal CA1 region of

LTED animals weeks later compared to animals who received imme-
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diate E2 replacement after ovariectomy. Note that the reduction in

ER-a protein levels occurred in all groups, including sham controls,

suggesting that LTED leads to lower ER-a levels regardless of treat-

ment and that E2 and ischaemia cannot reverse the suppression of

ER-a protein levels (42). This decrease in ER-a and E2 sensitivity

was tissue-specific because ER-a did not decrease in the uterus fol-

lowing LTED (Fig. 4E,F). It should be noted that LTED has been shown

to lead to a significant decrease of ER-a in the vasculature as well,

which was correlated with a loss of E2 vascular protective actions

(145,146). Additional work by our group has shown that the hippo-

campal CA3 region, which is resistant and not normally damaged

following global cerebral ischaemia, becomes heavily damaged in

LTED rats following global cerebral ischaemia (42). There is also a

dramatic induction of Alzheimer’s disease-related proteins such as

b-amyloid, amyloid precursor protein, and phospho-tau in the hip-

pocampal CA3 region of LTED rats following GCI (147). It is specu-

lated that the hypersensitivity of the hippocampal CA3 region to

ischaemic stress damage and Alzheimer’s disease-related protein

induction observed in our study could help explain the increased

risk for cognitive decline and dementia observed in women follow-

ing surgical menopause. Finally, a new 10-year re-evaluation of a

component of the WHI study has provided important support for

the critical period hypothesis (148). The study examined 11 000

women aged 50–79 years who had hysterectomies and were trea-

ted with either placebo or oestrogen alone. The WHI study was

stopped in 2004 as a result of increased stroke risk and the women

stopped taking oestrogen at that time. The 10-year follow-up study

found significant beneficial cardiovascular effects of oestrogen in

women in their 50 s, neutral effects for those in their 60s, and

increasingly negative effects in women in their 70s. Women who

were treated with oestrogen in their 50s had a 41% lower coronary

disease risk, a 46% lower heart attack risk, significantly decreased

invasive breast cancer risk, and a significant decrease in overall

mortality. By contrast, women who began oestrogen treatment in

their 70s had an increased risk of cardiovascular disease, colorectal

cancer and mortality. The study shows that age has an important

effect on outcome of oestrogen replacement therapy in humans,

and that oestrogen replacement in women in their 50s exerts many

beneficial effects that are lost if E2 treatment is delayed to later in

life (e.g. age 70 years or greater). These findings are consistent with

the ‘critical period’ hypothesis suggesting that oestrogen replace-

ment, to be beneficial, must be given prior to a long-term period of

oestrogen deprivation such as occurs after the menopause. It

should be noted that there are several other large clinical trials

ongoing on oestrogen replacement therapy benefits in humans, and

it will be interesting to see the outcomes of these studies.

Conclusions

Based on the literature summarised in this review, there is abun-

dant evidence that E2 has a significant neuroprotective effect

against cerebral ischaemia. Figure 5 provides a summary pathway

for the mechanisms of E2 neuroprotection. As shown in Fig. 5, E2

neuroprotection is suggested to be mediated by both extranuclear

and nuclear oestrogen receptor-signalling pathways. Based on

knockout and knockdown studies, as well as selective agonist stud-

ies, the predominant view is that E2 neuroprotection against cere-

bral ischaemia is mediated by ER-a. Exogenous agonist studies

suggest that activation of GPR30 and ER-b exogenously may also

exert neuroprotection against cerebral ischaemia, although studies

showing these receptors mediate endogenous E2 neuroprotection

against cerebral ischaemia are lacking. As further shown in Fig. 5,

E2 activation of nuclear ER leads to genomic signalling in

which the expression of pro-survival and anti-apoptotic genes are
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up-regulated and pro-death ⁄ apoptotic genes are down-regulated.

By contrast, E2 activation of extranuclear ER is proposed to modu-

late activation of kinases that can post-translationally modify the

activity of other key cellular proteins to exert neuroprotection. For

example, our studies showed that extranuclear signalling by E2 can

activate the pro-survival kinase, Akt, which phosphorylates Rac1

and inhibits its activation. The inhibition of Rac1 activation is pro-

posed to lead to a profound inhibition of NADPH oxidase activation,

and a resultant attenuation of cerebral ischaemia-induced O�2 ele-

vation, and oxidative stress damage, as well as decreased mito-

chondrial damage and apoptosis. Although not shown, there is also

abundant evidence that E2 can act directly on mitochondria, as well

preserve ATP production, decrease ROS generation and inhibit apop-

totic signalling. Finally, the extranuclear nongenomic signalling

pathway may cross-talk to the genomic signalling pathway because

E2 activation of kinases can lead to their translocation to the

nucleus, where they can regulate gene expression by post-transla-

tionally modifying the transcription factors and thus changing their

activity. It should be noted that this summary is obviously not ‘all

inclusive’ of the many possible signalling roles and actions of E2.

Nevertheless, it highlights some important signalling pathways that

have been elaborated recently and are considered to play a key role

in E2 neuroprotection in cerebral ischaemia. Finally, LTED can lead

to a loss of E2 neuroprotection and other key neural effects in the

brain. For the hippocampus, the loss of E2 neuroprotective effect

following LTED was shown to be correlated with a significant

decrease of ER-a levels in the hippocampal CA1 region. LTED was

also shown to lead to hypersensitivity of the hippocampal CA3

region to ischaemic stress. As a whole, the findings of decreased

sensitivity of certain brain regions to E2 provide support for the

‘critical period’ hypothesis that oestrogen replacement therapy may

need to be administered at peri-menopause to observe many of its

beneficial neural effects. In support of this contention, new results

from the WHI 10-year evaluation on oestrogen alone replacement

in women with prior hysterectomy provides support for the ‘critical

period’ hypothesis by demonstrating that the beneficial effects of

oestrogen alone on cardiovascular disease, heart attack, invasive

breast cancer and mortality were observed when administered to

subjects in their 50s, but not when administered to subjects in their

70s (148). Finally, the studies by our group and others on LTED

may also provide insights as to why surgical menopausal patients

have increased risks for cognitive decline and dementia, as well as

increased mortality for neurological diseases.
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