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The production of specific antibodies by mature
B cells involves up to three separate types of Ig gene
alterations. During early B-cell development,
Ig heavy-chain (IgH) and Ig light-chain (IgL)
variable-region exons are assembled from
component germline variable (V), diversity (D) 
and joining (J) gene segments by V(D)J
recombination [1]. In response to antigen, mature
B cells can change their expressed IgH constant
region (CH), and associated effector function, by a
distinct recombination process, termed IgH class-
switch recombination (CSR) [2–4]. At this stage,
variable-region gene exon sequences can be further
altered by somatic hypermutation (SM), potentially
generating higher affinity antibodies [5]. Whereas
V(D)J recombination has been well-characterized,
much less is known about CSR. In this review, we
discuss recent advances in our understanding of the
mechanism and control of CSR. In particular, we
focus on the crucial, but as yet not fully
characterized, roles of transcription and the recently
identified activation-induced deaminase (AID), 
a novel protein that is required absolutely for 
CSR [6,7]. In addition, we outline the substantial
mechanistic contrasts between V(D)J recombination
and CSR, discuss potential mechanistic overlaps
between CSR and SM, and speculate how CSR and
related mechanisms might be linked to genomic
instability and cancer. Finally, although this review
focuses primarily on CSR in the mouse, much of
what we discuss applies generally also to CSR in
humans.

Class-switch recombination and V(D)J recombination

employ distinct mechanisms

V(D)J recombination is initiated in progenitor
B lymphocytes by recombinase-activating gene 1
(RAG-1) and RAG-2 proteins, which introduce DNA
double-strand breaks (DSBs) precisely between
target recombination signal sequences (RSSs) and

flanking V, D or J coding segments [1]. Targeted
inactivation of Rag1 or Rag2 in mice results in a
complete lack of mature B and T cells, owing to their
inability to initiate V(D)J recombination. Joining of
RAG-liberated coding sequences and RSSs is carried
out by ubiquitously expressed, nonhomologous end-
joining (NHEJ) proteins, which are employed also for
the general repair of DSBs [8]. Three of these proteins
are sub-units of the DNA-dependent protein kinase
(DNA-PK), which is comprised of the Ku70 and Ku80
DNA end-binding complex (Ku), and the catalytic
subunit (DNA-PKcs). Two additional NHEJ proteins,
DNA ligase IV (Lig4) and XRCC4, are involved in
ligation. A deficiency in Ku70, Ku80, Lig4 or XRCC4
leads to a severe combined immunodeficient (SCID)
phenotype, owing to an inability to complete
RAG-initiated V(D)J recombination, as well as
more-general defects, including impaired cellular
proliferation. Deficiency of DNA-PKcs causes a SCID
phenotype also, owing to defective coding joining, but
does not cause severely defective RSS-joining or
proliferation defects, suggesting that DNA-PKcs
might be involved only in a subset of the functions of
NHEJ proteins [8].

Functional rearrangement and expression 
of IgH and IgL leads to the generation of IgM+

B lymphocytes. The murine IgH locus contains eight
different CH genes. Differentiating B lymphocytes
produce µ heavy chains first and, correspondingly,
IgM; but upon activation, they can juxtapose the
V(D)J exon to a downstream CH by CSR, allowing the
generation of different antibody classes (e.g. IgG, IgA
and IgE) and effector functions (Fig. 1) [3,4]. Some 
of the crucial early discoveries with respect to 
the mechanism of CSR have been summarized
recently [9]. CSR occurs within the 1–10 kb repetitive
switch (S) region sequences located 5′ of each CH gene,
except Cδ (which is expressed through alternative
RNA splicing). Thus, in contrast to V(D)J
recombination, CSR is carried out by mature
B lymphocytes and does not use a consensus target
sequence. Although we still do not know the initiating
factor for CSR, RAG-1- or RAG-2-deficient B cells,
generated by the introduction of functionally
rearranged VHDJH and VLJL knock-ins, are capable of
CSR [10]. Conversely, AID deficiency blocks CSR
completely but does not affect V(D)J recombination,
further distinguishing the two reactions [7]. As we
outline CSR in more detail, we will further compare
this process with V(D)J recombination.
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Regulation of class-switch recombination

B lymphocytes migrate from the bone marrow to
peripheral lymphoid organs, such as the spleen,
lymph nodes or gut-associated lymphoid tissues. In
these sites, naive B cells, often in association with

T cells, undergo antigen-driven clonal expansion in
germinal centers (GCs) [11]. At this time, B cells
might undergo CSR, although CSR can occur also
outside of the GC and, for IgA, might even occur
without prior expression of membrane-bound IgM
[12]. In contrast to V(D)J recombination, CSR occurs
only in B-lineage cells. Moreover, CSR is directed
specifically to particular CH genes by signals
generated from extracellular cytokines in the context
of various forms of B-cell activation [3,13]. CSR tends
to occur for the same S regions on both productive and
nonproductive alleles, indicating that the various
external agents that activate specific CSR events
generate signals that, ultimately, direct the DNA
recombination process [14]. In vivo, CSR can occur by
T-cell-dependent (TD) mechanisms that involve the
interaction of CD40 on B cells with CD40 ligand on
T cells, as well as by non-T-cell (non-CD40)-
dependent routes, through T-cell-independent (TI)
antigens [3,13]. TD responses can be mimicked,
in vitro, by stimulating B cells with anti-CD40
antibodies in the presence or absence of particular
lymphokines, whereas TI responses can be mimicked
by treatment with agents such as bacterial
lipopolysaccharide (LPS). Moreover, specific CSR
events can be induced by the in vitro exposure of
splenic B cells to particular combinations of activators
and cytokines [3,13]. For example, the activation of
murine B cells with LPS leads to the generation of
IgG2b- or IgG3-secreting cells; whereas simultaneous
treatment with LPS plus interleukin-4 (IL-4)
suppresses the generation of IgG2b- and IgG3-
secreting cells, but leads to the production of IgG1 and
IgE (Fig. 2).

Germline CH transcription
Germline CH genes are organized into germline
transcription units, in which transcription initiates
from a promoter 5′ of the I exon, runs through the
S region and undergoes polyadenylation downstream
of the CH exons [2,15] (Fig. 2). RNA splicing generates
a processed germline transcript by fusing the I exon to
the CH exons and deleting intervening S-region-
derived sequences. Although such transcripts occur in
the cytoplasm, they do not appear to encode proteins.
In this context, the activation of CSR by specific
cytokines correlates directly with the ability of
particular treatments to induce or suppress specific
germline CH transcription units before CSR, strongly
supporting a cause–effect relationship [14,15] (Fig. 2).
Gene-targeting studies have demonstrated that
promoter integrity of the I exon is required for
efficient CSR to associated S regions [16–20]. In
addition, constitutively transcribed drug-resistance
cassettes (e.g. the pgk-neor cassette) can replace
I-region promoters in directing CSR to a downstream
S region in activated B cells and alter CSR profiles
stimulated by particular activation treatments
[18–20]. Thus, transcription through the S region
plays a primary role in targeting CSR.
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Fig. 1. Class-switch recombination (CSR) occurs by a recombination/deletion mechanism. Ig heavy-
chain variable genes are assembled in progenitor B cells by V(D)J recombination. Subsequently, CSR
can exchange the constant-region heavy chain (CH) gene expressed with the assembled V(D)J
(see text for details). Abbreviations: D, diversity; J, joining; S, switch; V, variable.
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Fig. 2. Class-switch recombination (CSR) is directed by germline transcription. (a) Germline
transcripts originate from the promoter (P) upstream of the I exon, which precedes all the S regions
(adapted from Ref. [14]). (b) CSR of particular heavy-chain constant-region (CH) genes is preceded by
the induction of germline transcription of the CH region targeted for CSR. Abbreviations: C, constant
region; D, diversity; IL-4, interleukin-4; J, joining; LPS, lipopolysaccharide; RR, regulatory region;
S, switch; V, variable.



Regulation of germline CH transcription
Germline CH promoters contain sequences capable of
conferring LPS- and/or lymphokine-mediated
transcriptional regulation. In several cases, the
signal-transduction pathways leading from the
surface cytokine receptor to the activation of cis-
acting I-region promoters by specific transcription
factors have been elucidated [15]. However, efficient
in vivo germline CH transcription requires sequences
in addition to germline CH promoters. In this regard,
CSR or CSR-related deletions of downstream
S regions occur, albeit at reduced efficiency, in the

absence of the B-cell specific transcriptional enhancer
element (iEµ) located just downstream of the JH
segments [21,22]. Various observations, including
activation of the c-myc oncogene following
translocation into the downstream portion of the IgH
locus, have suggested that major control elements lie
3′ of the IgH locus [23]. For example, the 40 kb region
downstream from Cα harbors four enhancer
elements, referred to as HS3a, HS1,2, HS3b and HS4
[24] (Fig. 3a), which are conserved in humans and
appear to have locus control region (LCR)-like
properties [24,25]. HS1,2, also termed the 3′ IgH
enhancer, was thought to be a prime candidate for a
major CSR control element [23]. Replacement of
HS1,2 with a pgk-neor cassette disrupted germline
transcription of, and CSR to, a series of CH genes,
including Cγ3, which lies 120 kb upstream [26].
Although these studies are consistent with a major
role for HS1,2, the other possibility is that the
pgk-neor cassette interferes somehow with a
higher-level CSR regulatory locus 3′ of the IgH locus
(IgH 3′RR).

To resolve these models, the effects of pgk-neor

insertions in place of HS3a or HS1,2 were compared
with ‘clean’deletions of these elements (replacement
with a loxP site). These studies showed that neither
3′ enhancer element was required for CSR, but
insertion of the pgk-neor, in place of either enhancer,
inhibited germline transcription of, and CSR to,
various upstream CH genes [27]. Moreover, other
studies showed that insertion of transcribed drug-
resistance cassettes at additional sites within the CH
genes led to the inhibition of germline transcription
and/or CSR in the context of upstream, but not
downstream, CH genes [28,29]. However, insertion of
a pgk-neor cassette just downstream of HS4 had no
obvious effect on CSR [30]. Together, these insertional
mutation analyses point to the existence of a
3′IgH RR with crucial components lying between
HS1,2 and HS4. Strikingly, deletion of the HS3a–HS4
region has been shown recently to block germline
transcription of, and CSR to, a similar set of CH genes
as those affected by insertion of pgk-neor into HS1,2 or
HS3a [31], consistent with the predictions of the
insertional mutagenesis studies. In this regard, 
HS4 is a particularly attractive candidate to play a
major role in CSR because of its activity in late-stage
B cells [25,32].

Based on the pgk-neor inhibition studies, it has
been suggested that the IgH 3′RR might operate by a
promoter competition mechanism to help regulate the
differential expression of distal CH genes, although
other models are conceivable [24] (Fig. 3b). Moreover,
it remains to be demonstrated that the inhibitory
effects of the pgk-neor cassette are actually caused by
promoter activity. Of note, germline transcription of,
and CSR to, certain CH genes (e.g. Cγ1 and Cα) is not
affected markedly by either pgk-neor insertions or
deletion of HS3b and/or HS4 [26,31], consistent with
the possibility that such CH genes might be regulated
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Fig. 3. The 3′ Ig heavy-chain (IgH) regulatory region (3′ RR). (a) The region just downstream of the IgH
locus contains several DNAse hypersensitivity sites (HSs), which also have position-independent
enhancer activity in B cells [24]. (b) Class-switch recombination (CSR) might be regulated by a
promoter competition mechanism. In this case, induction of germline transcription of certain
heavy-chain constant-region (CH) genes would require both activation of a particular germline
promoter and also, its interaction with the 3′ IgH RR. In the context of such a model, adding
interleukin-4 (IL-4) along with lipopolysaccharide (LPS) would extinguish germline Cγ2b and Cγ3
expression by activating the Cε or Cγ1 promoters, which would compete more effectively for the 3′ IgH
RR activity. The question mark indicates that Cγ1 transcription can be activated independently of the
3′IgH RR. (c) Placement of certain exogenous promoters (e.g. the pgk-neor promoter) might, similarly,
inactivate expression of upstream germline CH transcription units dependent on the 3′ IgH RR for
expression (for details, see Refs [28,29]). The red stars represent an activated CH promoter that
interacts with the 3′ IgH RR to initiate germline transcription. The pink stars represent activated
promoters that are unable to induce germline transcripts owing to promoter competition for the 
3′ IgH RR. Abbreviations: D, diversity; J, joining; V, variable.



principally by proximal elements [33,34] or
uncharacterized long-range elements. Finally, the
precise functions of individual 3′ enhancers remain to
be elucidated; conceivably, they might also function in
other processes, such as SM [35,36].

Mechanism of class-switch recombination

The large and unusual nature of the S regions has led
to various models to describe their role in CSR (see,
for example, Refs [9,15,37–39]). A common starting
point is the knowledge that CSR results from the
fusion of an upstream S region to a downstream
S region with the deletion of intervening DNA (Fig. 1).
Recombination points are found throughout
individual S regions and can occur outside of the main
S region [9]. Therefore, unlike V(D)J recombination,
CSR is region-specific, occurs within introns and does
not influence translational reading frames. S regions
are composed of tandem repeats of pentamers
(predominantly, GAGCT and GGGGT) or a 49 base
pair sequence, and share varying degrees of homology
[3]. However, CSR breakpoints lack homology
generally and also, consensus junctions, arguing
against either a specific CSR signal motif or a primary
role for homologous recombination [9,15,40].

The degeneracy of S-region sequences and
heterogeneity of CSR sites led to CSR models in which
the S-region recognition code might lie in higher-
order structures, rather than primary sequences. In
this regard, murine and human S regions are GC-rich
and one strand is highly G-rich, properties which can
contribute to structures such as G quartets [38,41].
However, the S regions of frogs, although repetitive,
lack homology to each other and are AT-rich [42].
Assuming a common mechanism, the latter findings
might support models that argue for a role for
palindromic sequences in targeting a cleavage event
[4,43]. At this time, however, the precise function of
S regions remains speculative; indeed, recent
evidence showed that deletion of a major portion of
the tandem repeats of the Sµ sequence reduced
greatly, but did not abrogate, CSR in mice [44]. In that
case, residual CSR might have been promoted by a
small number of S-region elements left by the
deletion.

V(D)J-recombination substrates have revealed
many insights into the V(D)J-recombination
mechanism. Similarly, a variety of CSR substrates
have been introduced transiently or stably into
mammalian cell lines to study aspects of the CSR
mechanism [37,45–49]. Several of these substrates
appeared to recombine more efficiently in activated
B-lineage cells, suggesting a link to CSR. However,
studies of CSR substrates have led to a very wide
range of interpretations and models, particularly
with regard to potential S-region functions. One
potential explanation for the divergent findings is
that recombination in some substrates might have
occurred by pathways distinct from CSR that were
stimulated by the unusual S-region-sequence

composition. In this regard, it will be of great
importance to demonstrate that recombination
events in such substrates actually represent bona fide
CSR. The ultimate resolution of these issues might be
possible by testing model substrates in AID-deficient
cells.

Initiation and resolution: unresolved questions
CSR has been shown to generate two products: the
rearranged chromosome and an extrachromosomal
circle containing deleted intervening sequences
[50–53]. Although CSR-derived circles have not
been demonstrated unequivocally to be direct
reciprocal products of CSR junctions, such
recombination products can be explained most
easily by a simple cut-and-join mechanism [54]
(Fig. 1). In this model, CSR would be initiated by
DSBs or staggered single-strand breaks (SSBs) in
the S region, and completed by joining DNA ends in
the recombinant configuration. Indeed, S-region
DSBs have been detected in B cells undergoing 
CSR [55]. However, a major question has involved
the nature of the activity that would generate DSBs
or other potential initiating DNA lesions, and
whether or not it involves a specific CSR
recombinase (analogous to RAG) or a more general
factor and/or process associated with S-region
transcription. It is, perhaps, notable that S-region
instability, as indicated by internal deletions,
occurs in association with S-region transcription,
independent of CSR [21,56]. If, as hypothesized,
such instability were related mechanistically to
CSR [56], it might imply that initiation of CSR does
not require synapsis of two S regions, in contrast to
the requirement for two participating RSSs in
V(D)J recombination. Assays of the dependence of
the deletion phenomenon on AID should help to
reveal its relationship to CSR.

The numerous models that attempt to explain
CSR can be divided into two general, but not
mutually exclusive, categories, based on a direct
versus indirect role for transcription in generating
the initiating cleavage event (Fig. 4). First, in terms
of an indirect role, the correlation between germline
CH transcription and subsequent CSR has been
interpreted in the context of accessibility of the
S region to a specific CSR recombinase, expression
of which is induced in activated B cells [14,15]. The
V(D)J recombination accessibility model was based
on the existence of a single V(D)J recombinase [57];
however, it is not yet clear that there is a single CSR
recombinase that recognizes all S regions. In fact,
S-region-specific CSR factors that direct CSR
specifically in certain cell lines have been
implicated [49]. However, the nature of such factors
and their precise role in CSR requires further
clarification. A second model argues that
transcription plays a more primary role in the
initiation of CSR, perhaps leading directly to the
initiating event [14,15].
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In addition to the initiating mechanism, the
S-region joining mechanism is unknown also. The
heterogeneous nature of CSR junctions has pointed
to mechanisms such as NHEJ. Mutations in
components of the NHEJ system inhibit CSR [58–60].
Thus, Ku70- and Ku80-deficient B cells, generated by
complementation with germline IgH and IgL
knock-ins, show little ability to undergo CSR either
in vivo or in vitro, despite the activation and induction
of germline transcripts, implying a defect in the
terminal phases of CSR. However, as a deficiency of
Ku impairs B-cell proliferation also, the effect of the
Ku mutation on CSR could be indirect. Intriguingly,
DNA-PKcs-deficient B cells show no apparent
proliferation defects in response to appropriate
activation, support normal induction of germline

transcripts and yet, are defective in CSR to all CH
genes, except Cγ1 (J.P. Manis and F.W. Alt,
unpublished). These data provide the strongest
evidence in favor of a role for DNA-PKcs (and NHEJ)
in CSR. If so, however, then efficient CSR to IgG1
might occur also through an NHEJ-independent
pathway or DNA-PKcs-independent NHEJ, similar to
RSS joining in the absence of DNA-PKcs. It is notable
also that V(D)J recombination occurs in the G0 and/or
G1 stage of the cell cycle of nonproliferating,
developing lymphocytes [1], the stage of the cell cycle
in which the NHEJ DSB-repair pathway is most
crucial. By contrast, CSR occurs in proliferating cells,
has been argued to require DNA replication and
might occur in S phase [15,61], suggesting the
possibility of a role for DNA replication and
associated processes. Another important question is
the mechanism by which S regions are synapsed
during CSR [62].

AID – a crucial component of the class-switch
recombination process
Proteins have been identified that bind to, cleave or
recombine S regions in vitro [15], but their relevance
to CSR remains unclear. Recently, however, a
subtractive approach has identified gene sequences,
the expression of which was induced in a murine
B-cell line stimulated in vitro to undergo CSR [6]. One
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such sequence encoded a novel protein referred to as
activation-induced deaminase (AID), based on
sequence homology to a known deaminase.
Dramatically, AID-deficient mice, generated by gene-
targeted mutation, lack completely the ability to
undergo CSR (and, apparently, SM; see below), but
show no other obvious phenotype, except enlarged
GCs containing IgM-producing activated B cells [7].
Likewise, a group of immunodeficient patients
(hyper-IgM II syndrome) with impaired CSR had
mutations in the human gene encoding AID [63].
Notably, the defect in CSR in AID-deficient B cells is
cell-intrinsic and does not involve known steps in
B-cell activation leading to CSR. Overall, the
specificity of the AID-deficient phenotype for CSR is
strikingly reminiscent of the absolute specificity of
RAG mutations for V(D)J recombination. These
findings suggest that AID is required for the actual
CSR event itself and might either activate or be a
primary component of a CSR recombinase. In this
context, the enlarged lymph nodes and hyper-IgM
phenotype of AID deficiency might result from an
accumulation of activated B cells that cannot
differentiate further owing to their inability to effect
CSR [7,63].

The exact function of AID is speculative. In
theory, it might catalyze some stage of CSR (e.g.
initiation) directly; however, its sequence suggests
other possibilities also [6]. Thus, AID belongs to a
family of cytidine deaminases that catalyze the
hydrolytic deamination of cytidine to uridine, either
as free nucleotide or in the context of RNA.
AID bears closest resemblance to the RNA editing
enzyme apolipoprotein B mRNA-editing
complementation protein 1 (APOBEC-1) [6], which
catalyzes a site-specific cytosine to uridine change in
APOB mRNA and, thereby, introduces a premature
stop codon that leads to a novel truncated protein
[64]. Similarly, editing by AID might generate the
functional message for a putative component of the
CSR recombinase. We envision a CSR model in
which antigen stimulation would lead to two crucial
events (Fig. 4). The first would be germline
transcription to make particular transcribed
S regions accessible and guide S-region specificity.
The second would include the induction of
expression of AID, which would generate a CSR
recombinase that leads to cleavage of the 
S region [7,48]. However, a role for AID downstream
of initiation has not been eliminated; thus, it will 
be of significant interest to determine whether 
S regions are still cleaved and internal S-region
deletions still occur in AID-deficient mice. In any
case, following cleavage, S regions could be joined by
the general cellular repair machinery. Additional
potential roles for AID are outlined below. Whatever
its role, assays in AID-deficient cells might provide
the gold-standard for determining the accuracy
with which various substrates induce a bona fide
CSR process.

Potential roles for germline transcription and
DNA-lesion-repair pathways
Although there is no demonstrated role for
transcription per se in V(D)J recombination, evidence
suggests a more intimate, perhaps mechanistic, role
for germline transcription in CSR. Thus, the
organization of CH transcription units is conserved
among diverse species. However, I exons contain
multiple in-frame stop codons and are not conserved
at the level of nucleotide sequence [2,3]. Yet,
appropriate splicing of these apparently ‘sterile’
germline CH transcripts might be required for
efficient CSR [65–67], although more fine-targeting of
endogenous splice sites is needed to clarify this
potential relationship. In addition, transient
transfection assays show that recombination between
transcribed S regions proceeds more efficiently when
they are oriented in their normal, ‘sense’orientation
[47]. Thus, current data are consistent with the
possibility that germline CH transcripts play a direct
role in promoting CSR, and this role might depend on
both general structure and, possibly, sequence
composition (e.g. S-region orientation). However, the
latter notion has been challenged by studies
indicating that S-region orientation plays no role in
promoting recombination events between S regions in
chromosomally integrated substrates in a
B-lymphoma cell line [48]. Ultimately, this issue could
be resolved by gene-targeted inversion or
replacement of endogenous S regions.

Early studies showed that when S regions are
transcribed in vitro, transcripts remain on the
template DNA, forming RNA–DNA hybrids [68,69].
Although various higher order structures were
hypothesized, a recent study showed that the
displaced nontemplate strand remains largely single-
stranded and the RNA–DNA complex takes the form
of an R-loop [39]. Furthermore, this R-loop structure
can be recognized and cleaved by structure-specific
endonucleases [xeroderma pigmentosum group F
(XPF)-ERCC1 and XPG] involved in nucleotide
excision repair [39]. Based on these observations, an
R-loop model for the initiation of CSR was proposed in
which germline transcription would lead to the
formation of S-region R-loops, which could then be
cleaved by structure-specific endonucleases to yield
S-region strand breaks. However, because the R-loop
model is based entirely on in vitro observations, its
validity remains to be evaluated in vivo. In the
context of such general models, it is of note also that
the displaced DNA strand in transcribed S-region
DNA would be subject to the formation of secondary
structures [9] that could target cleavage activities
also. What could be the role of AID in the context of
R-loop or higher-order DNA-structure models?
Although editing roles could still be envisioned,
one could also imagine that AID might modify RNA
or DNA structures in some way to make them
more stable or better substrates for repair
endonucleases (Fig. 4).
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Mice deficient in mismatch repair (MMR) genes
show reduced CSR and altered CSR junctions focused
on consensus repeats [70,71]. Because MMR-deficient
B cells appear to activate and proliferate normally,
the effect of MMR-deficiency on CSR is probably
direct. In this context, the recession of S-region DSBs
by strand-specific exonucleases could expose short
stretches of microhomology in the form of single-
stranded DNA; such microhomology might then be
used for annealing cleaved S regions [72]. Because
microhomologies might occur internal to a DSB, such
annealing intermediates might contain also
heterologies in the form of branched DNA structures.
Based on the activities of yeast homologs, such
branches might be removed by the MMR proteins
before joining [73]. In addition, MMR proteins have
been proposed to recognize other unusual DNA
structures, such as loops and misaligned DNA
sequences, that might be generated during CSR [74].
A potential link between MMR and R-loop cleavage
might be provided by the observation that
Rad1–Rad10 (the yeast homolog of XPF-ERCC1) and
MMR proteins collaborate in cutting branched DNA
structures [74].

Potential overlaps in the class-switch recombination

and somatic hypermutation mechanisms

SM occurs in GC B cells during antigen-induced
proliferation at frequencies as high as one event per
1000 nucleotides cell−1 generation−1 [5]. In contrast to
the large deletions involved in CSR, SM comprises
point mutations, small deletions and insertions in the
V(D)J exons [75]. Intriguingly, however, CSR
junctions often contain point mutations and other
sequence alterations found in SM [40,76]. In addition,
CSR and SM share other features. First, SM relies on
transcription through the target V(D)J exons [77].
Second, the rate and nature of SM is influenced also
by the MMR system, and is focused on sequences
reminiscent of the hypermutation consensus
sequence in MMR-deficient cells [5,71,78]. Third, AID
appears to be required for SM, although it remains
possible that the apparent function of AID in SM is
indirect [7,63]. One hypothesis is that AID might
serve to generate the functional transcript for a DSB
initiator in SM separate from that employed for CSR
[7]. An alternative thinking is that similarities
between SM and CSR might be indicative of a
common mechanism, perhaps involving R-loops or
other secondary DNA structures within strongly
transcribed V(D)J sequences that are augmented by
AID functions [79].

As for CSR, the nature of the SM initiator is
unknown, although, again, it is linked closely to
transcription [77]. However, SM has been associated
with DNA strand breaks [80], which might include
both SSBs [81] and DSBs [82,83]. The DSBs appear
primarily during S and G2 phases of the cell cycle, as
opposed to G1 when NHEJ is most active [82],
consistent with the proposal that DSBs in SM might

be repaired by homologous recombination [78].
Whatever the initiation mechanism, mutations
associated with SM might be introduced subsequent
to an initiating DNA lesion resulting from error-prone
repair involving low-fidelity DNA polymerases [5].
Finally, important differences might exist between
CSR and SM. For example, SCID (DNA-PKcs-
deficient) mice reconstituted with transgenic B- and
T-cell receptors undergo efficient SM, suggesting
that, in contrast to CSR to most CH genes, DNA-PKcs
might not be required for SM [84]. However, because
DNA-PKcs is required for only a subset of NHEJ
transactions and might have roles outside of NHEJ,
clarification of these issues will require assays of SM
and CSR in Ku-, XRCC4- or Lig4-deficient B cells that
lack apoptotic responses to DNA damage. Finally, it is
of note that SM can occur independently of CSR
[85,86].

Genomic instability and cancer due to errors in class-

switch recombination or somatic hypermutation

Most human B-cell lymphomas arise in GCs. In
many cases, lymphoma cells harbor cellular
oncogenes, such as Bcl-2 or Bcl-6, translocated into
IgH S regions, resulting in deregulated oncogene
expression by association with IgH regulatory
sequences [87]. Other examples of S-region
translocations in B-cell tumors include murine
plasmacytomas and sporadic variants of human
Burkitt’s lymphoma that harbor c-myc translocations
into the IgH S regions [88]. It seems probable that
aberrant CSR plays a major role in the generation of
such translocations. Given the potential role of DNA
strand breaks in CSR and SM, such breaks might
play an important role in promoting translocations
associated with the genesis of mature B-cell tumors
[87,89]. A major question, however, is the mechanism
and factors that influence the joining of such breaks
to other chromosomal loci. Finally, because
progenitor-B-cell lymphomas harboring specific
translocations arise in mouse models as a result of
errors in V(D)J recombination in the setting of
defective NHEJ and lack of expression of the p53
checkpoint protein [90], it will be of significant
interest to attempt to promote the occurrence of
mature B-cell lymphomas by, similarly, impairing
DNA repair and checkpoint pathways in mature
B cells induced to attempt CSR or SM.

As noted previously, transcribed S regions can be
unstable in B-lineage cell lines, probably in
association with the activity of AID. By analogy,
certain non-Ig loci might be similarly unstable owing
to inherent sequence properties and this could
contribute to translocations. In addition, many
genetic diseases are associated with sequence
instability; for example, the amplification of triplet
repeats, which are linked to chromosomal fragile sites
[91]. Moreover, in vitro studies have shown that some
of these repeats can adopt unusual DNA structures,
such as hairpins [91]. Thus, mechanisms related to
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those of strand-break formation in S regions might
operate also in causing more-general chromosomal
instability. The role of AID or related proteins in
contributing to the instability of putative non-Ig
sequence targets is a question of significant potential
interest also. Clearly, understanding the basic
mechanisms of CSR and SM might lead to important
insights into mechanisms underlying genomic
instability and that contribute to B-cell
lymphomagenesis.

Perspective

Work on the elucidation of the V(D)J recombination
mechanism was aided greatly by the discovery of the
RAG proteins, which permitted extensive in vitro and
cell-based analyses. In contrast to V(D)J
recombination, progress in elucidating the CSR

mechanism has not advanced rapidly. Although
genetic evidence has suggested roles for several DNA
repair pathways in CSR, the precise mechanisms
leading to the initiation and resolution of this reaction
in the participating DNA strands remain relatively
uncharacterized. However, we anticipate that
discovery of the AID protein should result in rapid
progress. In particular, the availability of appropriate
cell lines deficient in this protein should allow the
firm establishment of CSR-substrate assays and
might provide also the basis for future in vitro
studies. Given the potential involvement of aspects of
the basic CSR mechanism in promoting S-region
sequence instability, results of such future studies
might have substantial implications for
understanding the basis of other types of genomic
instability in the context of particular diseases.
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