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Summary: The continual interaction of the immune system with a devel-
oping tumor is thought to result in the establishment of a dynamic state
of equilibrium. This equilibrium depends on the balance between effec-
tor and regulatory T-cell compartments. Whereas regulatory T cells can
infiltrate and accumulate within tumors, effector T cells fail to efficiently
do so. Furthermore, effector T cells that do infiltrate the tumor become
tightly controlled by different regulatory cellular subsets and inhibitory
molecules. The outcome of this balance is critical to survival, and whereas
in some cases the equilibrium can rapidly result in the elimination of the
transformed cells by the immune system, in many other cases the tumor
manages to escape immune control. In this review, we discuss relevant
work focusing on the establishment of the intratumor balance, the
dynamic changes in the populations of effector and regulatory T cells
within the tumor, and the role of the tumor vasculature and its activation
state in the recruitment of different T-cell subsets. Finally, we also discuss
work associated to the manipulation of the immune response to tumors
and its impact on the infiltration, accumulation, and function of tumor-
reactive lymphocytes within the tumor microenvironment.
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The immune system and cancer

The relative contribution of the immune system to the control

of cancer growth and its spread has been debated for many

years. The ‘cancer immunosurveillance’ hypothesis, initially

postulated by Burnet and Thomas in the late 1950s, proposed

that as tumors grew they could elicit efficient immunity which

prevented clinical manifestation and that the immune system

had evolved, at least in part, to control malignant cell out-

growth (1). Subsequent attempts to prove this hypothesis

showed that mice with an impaired immune system were

more susceptible to tumors, but controversy persisted as these

findings were mostly limited to chemically or virally induced

tumors. In the case of virus-associated tumors, it was argued

that the results could be attributed to virus-mediated transfor-

mation consequent upon impaired immunity against the virus

rather than as a direct effect of the impaired immune response



directed towards the cancer cells per se. Later work further

fueled the debate, as a series of experiments comparing wild-

type and nude mice showed no difference in the incidence of

non-virally derived tumors (2, 3). Only in the last two dec-

ades has the concept of cancer immunosurveillance been more

fully accepted following a series of publications demonstrat-

ing that mice genetically deficient in an array of key

components of the immune response (RAG) ⁄ ), RAG) ⁄ )

STAT) ⁄ ), PFN) ⁄ ), IFNc) ⁄ ), and IFNcR) ⁄ )) had higher sus-

ceptibility to spontaneous, transplantable, and chemically

induced tumors (4–7). The concept of cancer immunosurveil-

lance has evolved into a larger and more complex ‘cancer

immunoediting’ model, initially introduced by Ikeda, Old,

and Schreiber (1, 8), and defined by three key events: elimi-

nation, equilibrium and escape. In this model, the ‘elimina-

tion’ phase corresponds to cancer immunosurveillance, where

tumors are detected and destroyed by various components of

the immune response. During the ‘equilibrium’ phase, a bal-

ance is established between the tumor and the immune sys-

tem, during which both tumors and immune cells are shaped

reciprocally by each other. Finally, the immune system con-

tributes to the selection of tumor variants that will then grow

uncontrollably and ‘escape’ immune control (9).

It is during the equilibrium phase that the interplay

between several components of the immune system and the

tumor will define the final outcome of the immune response.

It is now clear that as tumors develop they can be infiltrated

by different subsets of effector, helper, and regulatory T cells

(Treg) which, together with myeloid derived suppressor cells

(MDSCs), can shape the microenvironment into one less per-

missive for effector T-cell (Teff) function. Furthermore, tran-

sition through the equilibrium phase not only depends on the

extrinsic control exerted by Treg cells and MDSCs but also on

the intrinsic regulation of T-cell function by co-inhibitory and

costimulatory receptor–ligand pairs. Understanding the key

factors involved in maintaining the balance during the equi-

librium phase and recognizing ways to interfere with them

will help us devise new therapeutic strategies capable of tilting

this balance towards elimination instead of escape.

Tumor-specific tolerance – general principles

Progression of cancer may depend on multiple changes within

the tumor, including changes intrinsic to the tumor cells

resulting in loss or attenuation of immunogenicity (as pro-

posed in immunoediting models), and changes that the tumor

cells induce in the surrounding microenvironment or more

broadly exert on host immunity to induce a state of immuno-

logical tolerance. Support for these latter mechanisms comes

from studies such as those of Willimsky and Blankenstein

(10) using a mouse model in which the viral SV40 large

T cancer-promoting gene was controlled to activate rarely

in random tissues. Although immune responses to the SV40

large T protein were initially detected in such mice, they sub-

sequently developed immune tolerance, whereas the tumors

remained capable of eliciting vigorous immunity when trans-

ferred into identical but tumor-free mice. Although tumor-

specific immunity is compromised in tumor-bearing mice,

there is often not generalized immune deficiency (11), indi-

cating that tumors can specifically suppress the induction of

effective antitumor immunity, subjugating host responses to

create isolated nodes of immune privilege within otherwise

immunologically intact hosts. Thus, in models of concomitant

immunity, mice injected with a tumor are capable of rejecting

a subsequent challenge with the same tumor at a distant site,

despite continued growth at the site of initial challenge

(12–14). Such concomitant immunity is eventually subverted

during primary tumor progression by the establishment of

CD4+ T-cell-mediated immune suppression (15), which has

more recently been shown to be mediated largely by CD4+

CD25+ Foxp3+ Treg cells (16).

Changes occurring during the escape phase of tumor

growth that contribute to the development of functional toler-

ance may be broadly considered as those intrinsic to the

tumor cells and those involving the local tumor microenviron-

ment. For example, increased expression of T-cell inhibitory

molecules, such as programmed cell death ligand 1 (PD-L1),

B7-H3, B7x, HLA-G and HLA-E, by the tumor cells or sur-

rounding parenchyma [stromal or antigen-presenting cells

(APCs)] can directly inhibit Teff cell function, and expression

levels by the tumor or its microenvironment correlate inver-

sely with outcomes in many epithelial tumors (17–25).

Similarly, soluble suppressive factors such as interleukin-10

(IL-10), transforming growth factor-b (TGF-b), vascular

endothelial growth factor (VEGF), or gangliosides may be

elaborated by either the tumor cells or parenchyma (26–32).

Indoleamine 2,3-dioxygenase (IDO) expression by tumor

cells or IDO-competent APCs can also contribute to acquired

tolerance, both by direct suppression of T cells and by

enhancement of local regulatory T-cell-mediated suppression

(33, 34). IDO catalyzes the rate-limiting step in tryptophan

degradation, and the combination of local reduction in trypto-

phan levels and the production of immunomodulatory trypto-

phan metabolites appears to exert tolerogenic activity.

Furthermore, IDO-expressing plasmacytoid dendritic cells

(pDCs) resident within tumor-draining lymph nodes appear

to directly activate mature Treg cells, which can subsequently
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cause upregulation of PD-L1 by other DCs which in turn

inhibits Teff proliferation (35). The presence of an array of

other cell types capable of actively suppressing immune

responses such as CD4+ CD25+ Foxp3+ Treg cells, IL-10-

secreting Treg, CD1d-restricted natural killer T (NKT) cells,

immature DCs and pDCs, and MDSCs has been demonstrated

to be pivotal for the induction and ⁄or maintenance of local

immune privilege in a number of animal models (34, 36,

37). Such cells may be preferentially recruited to these sites or

expanded or induced therein.

Extrinsic suppressors: T cells

CD4+ T cells can in many ways be considered as master regula-

tors of immune responses, contributing both to development

of effector and suppressor activities. The dominant inhibitory

potential of Treg cell populations in murine models of malig-

nancy is well established (38), and a similar potential role in

human malignancies has been suggested (39). The mecha-

nisms driving Treg cell expansion and accumulation in patients

with cancer are not fully understood, but both proliferation of

pre-existing Treg and conversion from naive precursors are

likely to be involved (40–42). Suppressor populations fall

broadly into one of two categories: a thymically derived popu-

lation that appear crucially dependent on the expression of the

X-linked forkhead ⁄ winged helix transcription factor Foxp3 for

their development (so-called ‘naturally occurring’ Treg) (43–

49), and a peripherally induced population which arise from

naı̈ve CD4+ T cells as a result of ‘tolerogenic’ encounters. These

‘inducible’ Treg include IL-10-producing Tr1 cells (50–52),

TGF-b-producing Th3 cells, which are mostly associated with

oral tolerance (53, 54), and extrathymically or de novo gener-

ated CD4+ CD25+ Foxp3+ inducible Treg (iTreg) cells (55–

60). The acquisition of regulatory phenotype by conventional

non-regulatory CD4+ T cells appears important for the mainte-

nance of T-cell homeostasis and control of inflammation.

Assuming antigen encounter is required for conversion, it is

likely that the regulatory pool expands at the expense of poten-

tial Teff, since precursors recognizing tumor antigens may be

redirected into a suppressor rather than effector phenotype

(40, 61, 62). Factors such as suboptimal antigen stimulation

in combination with TGF-b appear to be important in driving

peripheral conversion, both of which are likely to be relevant

within the tumor microenvironment (57, 63).

Extrinsic suppressors: APCs

Suppressive APC populations have been postulated to play a

part in the generation of local immune privilege within

tumors. Developing tumors may selectively recruit suppressive

APCs or convert stimulatory APCs into suppressors, mirroring

the situation with suppressive T-cell populations. The molecu-

lar mechanisms underpinning active immune suppression by

DC and myeloid populations have not been fully elucidated

but include secretion of IL-10 and TGF-b, expression of FAS

ligand, PDL1, and elaboration of intracellular IDO (64–68).

IDO-competent DCs can induce apoptosis of activated T cells

or either T-cell anergy or conversion of effectors into iTregs,

as previously outlined (35, 69–71). The local balance of stim-

ulatory versus suppressive APCs is probably critical in deter-

mining the eventual outcome of T-cell encounter with antigen

in these sites. It has also become clear that the interaction

between DCs and Tregs is likely a two-way process (72–74).

MDSCs are a heterogeneous group of cellular precursors of

macrophages, granulocytes, DCs, and myeloid cells at earlier

stages of differentiation (75–77). Specific phenotypic markers

that are reflective of suppressor function remain relatively

poorly defined (78). MDSC numbers may correlate with clini-

cal outcomes in human cancer (79). Several tumor-derived

cytokines have been implicated in the expansion of MDSCs,

including VEGF, IL-1b, and granulocyte-macrophage colony-

stimulating factor (GM-CSF) (80–82). The mechanism of

MDSC-mediated suppression is complex, involving contribu-

tions from either inducible nitric oxide synthase or arginase 1

(65, 83–86), which enable MDSCs to inhibit T-cell responses

in various ways, including induction of apoptosis, inhibition

of proliferation, or induction of a regulatory phenotype. Type

2 macrophages found at tumor sites have also been implicated

in suppression of tumor immunity and seem to share some

functional properties with immature myeloid cells (87, 88).

Effector-intrinsic tolerance

The existence of co-inhibitory receptors mediating direct

downregulation of lymphocyte activation and ⁄or effector

function is a well-recognized feature of the immunoglobulin

superfamily. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is

expressed by activated CD4+ and CD8+ T cells, though its sur-

face expression is tightly regulated with a short half-life. It

influences some the earliest events in T-cell activation (89,

90), being rapidly mobilized from intracellular vesicles to the

immune synapse after T-cell receptor (TCR) engagement

(91). It is constitutively expressed by natural and inducible

Foxp3+ Tregs, although the majority of CTLA-4 is again found

intracellularly. CTLA-4 shares the B7-1 (CD80) and B7-2

(CD86) ligands with CD28, a critical costimulatory molecule.

Ligation of CD28 in concert with TCR stimulation enhances
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T-cell proliferation by inducing production of IL-2 and antia-

poptotic factors, decreasing the number of ligated TCRs that

are required for a given biological response (92). CTLA-4 has

significantly higher affinities for both B7 ligands than does

CD28 and may therefore outcompete CD28 for the ligand

(93). Furthermore, CD28 recruitment to the immunological

synapse can be disrupted by CTLA-4, which forms extended

high affinity lattices of alternating CTLA-4 and B7-1 homo-

dimers (94). CTLA-4 ligation by B7 ligands also induces

decreased production of cytokines (particularly IL-2 and its

receptor) and cell cycle arrest. Finally, in addition to its role in

controlling Teff function, CTLA-4 has an important role in

Treg-mediated suppression (95), as further evidenced by the

recent demonstration that Treg-specific CTLA-4 deficiency in

conditional knockout mice is associated with a profound

reduction in their suppressive capacity (96). The function of

CTLA-4 as a negative regulator of CD28-dependent T-cell

responses is most strikingly demonstrated by the phenotype

of CTLA-4 knockout mice, which succumb to a rapidly lethal

polyclonal CD4-dependent lymphoproliferation within

3–4 weeks of birth (97, 98). The role of CTLA-4 in control-

ling antitumor responses has been demonstrated in many pre-

clinical models of cancer, thus suggesting that interfering with

this pathway in cancer patients may also result in improved

survival. This was recently demonstrated in a randomized

phase III trial in advanced melanoma. Patients receiving a

blocking monoclonal antibody against human CTLA-4

(ipilumimab), either alone or in combination with a gp100

peptide vaccine, demonstrated superior overall survival when

compared to patients receiving only the vaccine (99). This is

the first randomized trial to ever demonstrate that blockade of

an immune inhibitory pathway can be used as an effective

cancer therapeutic.

PD-1 is more broadly expressed than CD28 or CTLA-4. It

can be detected on activated CD4+ and CD8+ T cells, as well as

B cells, monocytes, and at lower levels on NKT cells. It binds

Blood Vessel

TumorInfiltration

CD4+ THCD4+ Treg

CCL22/CCL17 Endothelin

ICAM/VCAM

Conversion

ProliferationProliferation

Apoptosis Apoptosis
Reversion?

EliminationEscape

Foxp3

Fig. 1. The intratumor balance of effector and regulatory T cells (Treg). The infiltration of tumors by different subsets of lymphocytes can be ini-
tially affected by the activation state of the tumor vasculature as well as by the tumor microenvironment. During tumor progression and under non-
inflammatory conditions, a microenvironment rich on CCL22 and or CCL17 will favor recruitment of CD4+ Foxp3+ Treg cells via engagement of
chemokine receptor 4 (CCR4) on their cell surface. Furthermore, endothelin-1 produced by tumors will engage endothelin B receptor on the tumor
endothelium and reduce infiltration by activated effector T cells (Teff) through downregulation of intercellular adhesion molecule (ICAM) on the
tumor vasculature. Conversely, activation of the tumor vasculature by inflammatory mediators or by immunotherapy can increase the expression of
adhesion molecules such as ICAM and vascular cell adhesion molecule (VCAM), thus favoring tumor infiltration by Teff. Once within the tumor, the
balance is maintained by expansion and contraction of both regulatory and effector T cells. Low levels of costimulation, absence of Th1-type inflam-
mation, and presence of cytokines such as TGF-b may further contribute to conversion of CD4+ Foxp3) naive or helper T cells into CD4+ Foxp3+

Treg, thus tipping the balance towards tumor tolerance and escape. Although still debated, changes in the stability of Foxp3 may result in Treg revert-
ing into Teff. In addition, an increase on the levels of costimulatory molecules or inflammatory intermediates will also contribute to the accumulation
of Teff and reduction of Treg within the tumor, consequently leaning the balance towards tumor elimination.
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to two ligands, PD-L1 and PD-L2, which exhibit distinct

expression profiles (68). PD-L1 is broadly expressed and can

be detected on resting and activated T cells (including CD4+

CD25+ Foxp3+ Tregs), B cells, macrophages, DCs, and mast

cells. In addition, its expression on non-hematopoietic cells

(including cornea, lung, pancreatic islets, placental synctio-

trophoblast, keratinocytes, and vascular endothelium) may

have relevance to the function of this receptor–ligand pair.

This broad non-hematopoietic expression pattern suggests

that inhibition through the PD-L1 ⁄ PD-1 axis may not be

restricted solely to the interaction of T cells and professional

APCs but that it may also be relevant during the effector phase

of the immune response in peripheral tissues, perhaps helping

to prevent immune-mediated tissue damage directly at the tis-

sue interface. By comparison, PD-L2 has a much more limited

expression profile. It is not expressed on naive or activated

T cells but is instead restricted to activated macrophages,

myeloid DCs, and mast cells, suggesting that it fulfills a role

that differs from that of PD-L1. The phenotype of PD-1) ⁄ )

mice provides perhaps the most direct evidence for an inhibi-

tory role of this receptor (100, 101). These mice can develop

an array of autoimmune pathologies characterized by high

titers of auto-antibodies.

PD-L1 is expressed by a variety of human and murine

tumors, and PD-1 expressed by tumor-infiltrating lympho-

cytes, suggesting that they may be important in restricting

intratumor Teff responses. In humans, myeloid DCs isolated

from tumor or lymph nodes from ovarian carcinoma patients

express high levels of PD-L1 and are capable of enhancing

T-cell activity only following PD-L1 blockade (102). Likewise,

pDCs in tumor-draining lymph nodes produce high levels of

IDO, which results in Treg cell activation, upregulation of

PD-L1 on the DCs, and negative regulation of T-cell responses

(35). PD-L1 is expressed on several human carcinomas (mam-

mary, cervical, lung, ovarian, colonic, renal), as well as mela-

noma, glioblastoma and some hematopoietic malignancies

(18, 103–107). Its expression has been directly correlated

with poor prognosis in bladder, breast, kidney, gastric, and

pancreatic cancer (19, 105, 108). Forced expression of PD-L1

on murine tumor lines diminished T-cell activation and tumor

killing in vitro and markedly enhanced tumor growth in vivo,

while anti-PD-L1 antibodies blocked these effects (109, 110).

PD-L1 was recently demonstrated to bind B7-1 with an

affinity intermediate between those of CTLA-4 and CD28 for

B7-1 (111). This interaction is specific and bidirectional,

allowing suppression of T-cell proliferation and cytokine pro-

duction either through B7-1 or PD-L1. T-cell activation signals

delivered through the TCR and CD28 will thus be integrated

with cell-intrinsic co-inhibitory signals delivered through

CTLA-4 and PD-L1 (via B7-1 on the APC and potentially also

via B7-1 and PD-1 on other T cells), and PD-1 and B7-1 (via

PD-L1 on the APC and potentially via CTLA-4, PD-1, and

PD-L1 on other T cells). Finally, inhibitory signaling through

PD-1 and B7-1 (via PD-L1 on non-hematopoietic tissues) may

influence the final outcome of antigen encounter in the

periphery. It is likely that there is some redundancy within

such complex and apparently overlapping systems. The physi-

ological relevance of some of these findings remains uncer-

tain, but members of the PD-1:PD-L1 ⁄ PD-L2 grouping clearly

make attractive therapeutic targets for attempts to enhance

antitumor immunity. Recent data highlight the relevance of

this pathway to chronic T-cell responses to pathogens (112–

115). During chronic viral infection, antigen-specific CD8+

T cells are impaired. These ‘exhausted’ T cells demonstrate a

selective upregulation of PD-1, and in vivo administration of

anti-PD-L1 antibodies restores their activity, as indicated by

increased proliferation and cytokine production, and by a

significant reduction in viral load (112). Similarly, upregula-

tion of PD-1 on HIV-specific CD8+ T cells has been associated

with T-cell exhaustion and disease progression in humans

(113, 116). Together these data suggest that blockade of PD-1

and ⁄or PD-L1 can restore functionality of the T-cell compart-

ment and could be applied not only to reinvigorate responses

to chronic infections but also to enhance T-cell activity

towards other chronic pathologies such as cancer.

The intratumor balance of Teff and Treg cells

The Teff ⁄ Treg ratio

As mentioned earlier, several layers of regulation can restrict

or prevent immunity against tumors. Tregs play a pivotal role

in the control of autoimmune diseases and infections, and

several studies have also demonstrated their role controlling

antitumor immunity (39, 61, 117–121). Together with con-

trolling the initiation of the immune response in peripheral

lymphoid organs, Tregs also accumulate at tumor sites in mice

and in humans (118, 121–125) where they can regulate

helper and Teff responses (126, 127). The attention of immu-

notherapists has therefore been focusing on the events taking

place within the tumor microenvironment. Whereas the pro-

portion of Tregs in peripheral lymphoid organs averages

5–10% of the total CD4+ T-cell compartment, this proportion

is significantly increased at tumor sites, amounting to 20–30%

dependent on the type of tumor (121). This is an important

observation, since all in vitro and in vivo data suggest that Tregs

suppress in a dose-dependent manner. Nevertheless, tumor
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infiltration is not restricted to Tregs, as other T-cell subsets

such as CD4+ Foxp3) as well as CD8+ T cells can also be found

within tumors. Prior to the description of Foxp3 as a key mar-

ker for Tregs, many studies had demonstrated that the pres-

ence of tumor-infiltrating lymphocytes (TILs) correlated with

a favorable overall survival (128–130). Later work from

Ohtani’s group (131, 132) studying both murine and human

cancers went further in the analysis of the TILs and concluded

that whereas tumors lacking T-cell infiltrates were most likely

to progress, it was the presence of a CD8+ T-cell infiltrate and

proliferation of such cells that best correlated with favorable

prognosis. Further critical insights were provided by Sato et al.

(133), who incorporated an additional variable to the analysis

of TILs. By analyzing the levels of Foxp3+ T-cell infiltrates,

they demonstrated that broad characterization of CD3+ T-cell

infiltrates was not sufficient to determine correlation with sur-

vival but instead a high ratio of CD8+ T cells to Foxp3+ Treg

cells was clearly associated with favorable prognosis in epithe-

lial ovarian cancers (133). This major breakthrough in the

characterization of TILs was not limited to humans. It was also

observed in murine models of cancer. Using the transplantable

B16 melanoma (121) and TRAMP-C2 prostate cancer cell lines

(authors’ unpublished data), we observed that untreated

tumors were predominantly infiltrated by CD4+ T cells, of

which the majority were CD4+ Foxp3+ Tregs. The relative

abundance of CD8+ T cells was severely reduced within

tumors, where CD8+ T cells co-existed with Tregs in similar

numbers. Together these data underscored the relevance of

the intratumor balance between effector and Treg (Fig. 1) and

posed the question of whether tipping this balance towards

the Teff compartment would prevent tumor escape while

favoring elimination.

Modifying the intratumor balance through costimulation

Both we and others have demonstrated that therapeutic inter-

ventions that significantly increase the intratumor Teff ⁄Treg

ratio are most likely to result in effective tumor rejection.

Combination of a GM-CSF-secreting tumor cell-based vaccine

(Gvax) with a blocking anti-CTLA-4 antibody induced sub-

stantial tumor infiltration by CD8+ Teff cells, which increased

the intratumor ratio of CD8+ Teff ⁄Treg cells and directly cor-

related with tumor rejection. In contrast, mice treated with

either Gvax or anti-CTLA-4 monotherapy showed only a par-

tial increase in the intratumor CD8+ Teff ⁄ Treg cell ratio and

failed to reject tumors (121). In keeping with this observa-

tion, CTLA-4-blockade in combination with a FLT3L-secreting

tumor-cell-based vaccine also resulted in significant increases

in the CD8+ Teff ⁄Treg ratios and potent tumor rejection

(134). Similar results have been observed in cancer patients,

where CTLA-4 blockade resulted in increased ratios of effector

to Treg (135, 136). The capacity to change the intratumor

balance is not restricted to CTLA-4-blockade, as blocking

inhibitory signals via PD-1 ⁄ PD-L1 interactions also resulted in

increased Teff ⁄Treg ratios and tumor rejection (137). Combi-

natorial blockade of both CTLA-4 and PD-1 pathways resulted

in an additive effect with significantly higher Teff ⁄Treg ratios

and potent tumor rejection. This is encouraging, as a recent

study in melanoma patients demonstrated that the majority to

tumor infiltrating CD8+ T cells expressed high levels of PD-1,

thus suggesting this as a relevant pathway in the regulation of

intratumor responses in cancer patients (138).

Enhancing stimulation of T-cell function via the tumor

necrosis factor receptor family also modifies the intratumor

balance of T cells, as treatment of established tumors with

agonistic anti-GITR (139) or with a combination of cyclo-

phosphamide and an OX40 agonistic antibody (140) resulted

in significant CD8+ T-cell infiltration with a concomitant

reduction in Foxp3+ Treg cells within the tumors.

Although numerous studies have demonstrated a correlation

between the changes in the intratumor balance of Teff ⁄Treg

cells and tumor rejection, we still lack a clear understanding

of the mechanisms driving such changes. In most cases, overt

accumulation of Teff cells and reduction of Treg cells at the

tumor site are most likely explanations for the increase in the

Teff ⁄Treg ratio, but the cellular and molecular mechanisms

underpinning these changes remain less clear.

Dynamic changes in the frequency of tumor infiltrating

Treg

Treg accumulation

The description of an intratumor balance favored by the natu-

ral accumulation of CD4+ Foxp3+ Treg cells and the impact of

modification of such tumor balance through immunotherapy

gives rise to two major questions: (i) what drives the accumu-

lation of Tregs within tumors during tumor development and

(ii) what are the mechanisms driving the increase in the intra-

tumor Teff ⁄Treg cell ratio following immunotherapy.

The most likely explanations for Treg accumulation during

tumorigenesis include an increase in Treg infiltration,

enhanced proliferation, reduced apoptosis, or de novo induction

(or conversion) of CD4+ Foxp3) cells into CD4+ Foxp3+ Treg

cells. Clearly these mechanisms are not mutually exclusive.

Tumor infiltration driven by the expression of the chemokine

receptor 4 (CCR4) on Tregs is considered a major contributor
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in some settings. Seminal studies by Curiel et al. (39) demon-

strated that in human ovarian carcinoma, a high frequency of

tumor-infiltrating Treg cells correlated with poor survival.

They were able to demonstrate in vitro and in vivo that Treg infil-

tration (but not Teff infiltration) depended on CCL22 ⁄CCR4

interactions with CCL22 being produced both by tumor cells

and by tumor-infiltrating macrophages (39). Subsequent stud-

ies in melanoma (141), breast cancer (142), Hodgkin’s lym-

phoma (143, 144), and most recently in human glioblastoma

where the presence and frequency of Tregs also correlated

with the WHO tumor grade (145), further support a role for

TARC ⁄ CCL17 and MDC ⁄CCL22 (specific ligands for CCR4) in

tumor infiltration by CD4+ Foxp3+ CCR4+ Treg cells. Several

strategies including monoclonal antibodies or receptor antag-

onists are being developed to target CCR4+ Treg cells and pre-

vent tumor infiltration, although their efficacy at preventing

or, more importantly, reverting Treg accumulation remains to

be fully demonstrated (144, 146, 147).

Less is known about changes of Treg proliferation within

tumors. In a model of murine autoimmune diabetes, low levels

of IL-2 are required for maintenance of intra-islet Treg homeo-

stasis and survival (148). An equivalent scenario could occur in

tumors where low levels of IL-2 would help sustain Treg prolif-

eration and homeostasis. Although this hypothesis has not been

formally tested, we have previously demonstrated that

untreated B16 melanoma is infiltrated by CD4+ Foxp3+ Treg

cells as well as by CD4+ Teff cells (120, 121). Teff cells could be

providing the low levels of IL-2 required for Treg survival and

proliferation within the tumor microenvironment. In keeping

with this, analysis of untreated tumors demonstrates high levels

of KI-67 expression by tumor infiltrating Treg cells (120).

Finally, IDO produced by either tumor cells or parenchyma also

favors the activation and expansion of Treg cells (35, 71, 149).

Numerous studies now support the idea that de novo induc-

tion (conversion) of CD4+ Foxp3+ Treg cells from CD4+

Foxp3) precursors contributes significantly to Treg accumula-

tion within tumors. However, distinction between conversion

and expansion can be technically difficult due to a require-

ment for highly purified populations of CD4+ Foxp3) precur-

sors in many conversion models. Initial studies were based on

CD4+ CD25) purification strategies where there was still a

chance for contaminating Foxp3+ cells within the CD25) pop-

ulation. The use of Foxp3 green fluorescence protein (GFP)

knockin mice as more reliable sources of Foxp3) precursors

has only been possible more recently. Studies by the Levitsky

group (40) were among the first to demonstrate conversion

of CD4+ CD25)GITR) HA-reactive CD4+ T cells into Foxp3+

Treg cells in response to HA-expressing B-cell lymphomas

(40). Nevertheless, since conversion was induced in response

to tumors expressing MHC class II which could be directly

presenting antigen to CD4+ T cells, it remains unclear whether

this observation is fully translatable to non-hematopoietic

class II-negative tumors. Recent studies using Foxp3GFP cells

demonstrated that lamina propria DCs could promote de novo

generation of Foxp3+ Tregs upon oral exposure to antigen in

a retinoic acid-dependent manner (150). In this model, in vivo

conversion depended on TGF-b as well as on a lymphopenic

environment. Two recent studies suggest conversion as a main

mechanism for Treg generation in response to tumors. The

first, using a murine pancreatic tumor cell line (Pan02)

showed an increase in de novo induction of Treg in vivo in a

TGF-b dependent manner (151). The second demonstrated

that conversion of OVA-reactive CD4+ T cells in response to

OVA-expressing B16 melanoma was dependent on PD-1 ⁄
PD-L1 interaction (152). Interestingly in both studies, conver-

sion seemed to depend on host lymphodepletion. TGF-b

emerges from these studies as a common requirement for

conversion. It is provided by many tumor types, supporting

the idea that the intratumor microenvironment can drive con-

version. The apparent requirement for lymphopenia in driving

conversion in many of these models remains intriguing. Is

lymphopenia really required, or are there conditions within

the tumor microenvironment that resemble those of a lymp-

hopenic environment? Interestingly, under many circum-

stances, cancer patients can be partially lymphodepleted either

by the effect of chemo-therapeutic or radio-therapeutic inter-

ventions or in response to the tumor itself. Perhaps it is in

these conditions where de novo induction of Treg cells becomes

more relevant in the expansion of the regulatory compart-

ment.

Treg reduction

How can this tolerogenic state or balance in the tumors be

broken? Increased tumor infiltration by activated Teff cells

clearly contributes (121, 139, 140). But besides Teff infiltra-

tion, a decrease in the absolute number of Tregs within the

tumor can also account for at least part of the increase in the

Teff ⁄Treg cell ratio (140, 153, 154). It is not clear what medi-

ates this reduction in Treg numbers. Reduced conversion,

increased Treg cell death, impaired infiltration, or even a

reduction in the stability of Foxp3 in the regulatory T-cell

compartment are all considered potential mechanisms.

Although some studies suggest that manipulation of costim-

ulatory pathways can lead to a reduction in conversion (155–

157), it is not clear in the tumor setting if interfering with
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those pathways changes the Teff ⁄Treg cell ratio by reducing

conversion or by increasing Teff infiltration. An alternative to

reduced conversion is the loss of Foxp3 expression, perhaps

representing reversion. Treatment of tumor-bearing

Foxp3GFP mice with GITR agonistic antibodies resulted in loss

of intratumoral Tregs, apparently due to loss of Foxp3. This

was verified in histological analysis of tumors, where cells

expressing GFP but not Foxp3 were detected, thus supporting

the idea of Foxp3 instability (154) In keeping with this find-

ing, a recent study demonstrated that a substantial proportion

of CD4+ Foxp3+ cells have unstable expression of Foxp3.

Remarkably, loss of Foxp3 expression renders these cells

autoreactive as demonstrated by their capacity to mediate

autoimmune diabetes (158). The issue remains controversial,

however, as a newer study demonstrated great stability of

Foxp3 in vivo during steady state and after different inflamma-

tory stimuli including autoimmune diabetes (159). Here, the

authors point out that one potential explanation for the

discrepant outcomes of these studies may reside in different

regulation of Foxp3 expression in the bacterial artificial chro-

mosome transgenic mouse (158) versus the endogenous

regulation found in the knock in mouse model (159). Finally

there is evidence that Foxp3 stability may be dependent on

the cell in which it is expressed. A recent study demonstrated

that whereas the majority of CD4+ Foxp3+ cells are stable

(most of them CD25+), a much smaller subset within the

CD25) population can actually lose and re-acquire Foxp3

expression depending on the environmental cues (160).

Finally, increased Treg death has also been postulated as a

potential mechanism accounting for reduced Treg numbers.

Although finding apoptotic Tregs has been challenging, a

recent paper elegantly demonstrated that a combination of

OX40 agonistic antibodies and cyclophosphamide resulted in

Treg apoptosis in a murine model of melanoma (140). FAS

⁄ FASL interactions have been implicated in increasing Treg

apoptosis. In animal models of colitis, inflammatory stimuli

were capable of inducing a local FAS-dependent depletion of

Tregs without significantly affecting CD4+ Teff cells (161). In

a recent publication using a murine model of breast cancer,

immunizations with both effector and helper epitopes resulted

in significant antitumor responses characterized by a striking

change in the intratumor balance of Teff and Treg due to a

reduction in tumor-infiltrating Tregs. This reduction was due

to apoptosis induced by CD4+ FASL+ T-helper cells induced

by the vaccination strategy, and further corroborated after

intratumor administration of anti-FASL blocking antibodies

prevented Treg apoptosis enabling tumor progression (162).

The FAS ⁄ FASL hypothesis offers some additional insights into

the establishment and resolution of the equilibrium phase. As

a tumor develops and Teff cells recognize antigen in absence

of costimulation or inflammation, they will succumb to acti-

vation-induced cell death, whereas in this same microenviron-

ment, Tregs will tend to infiltrate, expand, and convert, thus

tilting the balance towards tolerance and escape. Conversely

during immunotherapy, Teff cells will infiltrate and contrib-

ute to the elimination of Tregs through FAS-mediated apopto-

sis. Importantly, several publications suggest that Teff cells

primed in vivo become resistant to FAS-mediated killing, thus

allowing them to survive within the inflammatory milieu

generated in the rejecting tumor (163, 164).

Dissociation of systemic and local responses

Tumor vasculature and microenvironment as barriers to

T-cell infiltration

Despite attempts to elicit potent antitumor reactivity through

targeting cell-intrinsic and cell-extrinsic regulatory circuits,

the responses we are able to generate and quantify in the

periphery (i.e. blood and lymphoid structures) have not been

mirrored by such promising outcomes in the clinic. In some

cases, this could still reflect less than optimal T-cell activation

and a lack of durable immunity, but as our understanding of

tumor biology grows, we have realized that barriers other

than immune-regulatory checkpoints exist. One such barrier

is the restriction of efficient redistribution and accumulation

of Teff within tumor lesions. Studies in both mice and

humans have demonstrated that tumors can continue to grow

regardless of detectable levels of tumor-reactive CD4+ and

CD8+ T cells in peripheral blood (165–169). One potential

explanation is inability of the tumor or tumor antigen to

prime a proper T-cell response, either due to lack of costimu-

latory signals or due to antigen sequestration. This is

supported by work in the RIP-Tag5 pancreatic cancer model,

the Lewis lung carcinoma model and the B16 ⁄ BL6 melanoma

model showing that presence of tumor did not result in

activation of TCR transgenic tumor-reactive CD8+ T cells

(168–170). Furthermore, another study by Mark Davis’ group

(167) identified a group of melanoma patients in whom

tumor-specific CD8+ T cells identified by MART1 tetramers

displayed a naive phenotype, suggesting lack of T-cell activa-

tion even in presence of active disease. Nevertheless, there are

studies where good levels of T-cell activation can be detected

in absence of tumor regression (171, 172). For instance, in

the RIP1-Tag5 model, tumor reactive T cells upregulate the

activation marker CD44, dilute CFSE, and acquire cytotoxic

activity, suggesting that tumors are capable of eliciting T-cell
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activation even in the absence of immunization (172). Despite

the presence of activated cytotoxic T cells, tumors continued

to grow, suggesting that acquisition of potent effector func-

tion by the T-cell compartment is insufficient to drive tumor

rejection. On the clinical front, immunizations with the MHC

I-restricted peptide from the melanoma differentiation antigen

gp100 elicit robust CD8+ T-cell responses against gp100 in

peripheral blood samples (173). Strikingly, however, none of

the tumor-reactive lymphocytes isolated from the tumors rec-

ognized the gp100 peptide used in the vaccine. This data

underscores the schism that can exist between responses mea-

sured in the blood and those taking place in the tumors.

As novel therapeutics become available, immunotherapists

are attempting to better model treatment of disease by treating

fully established vascularized tumors. During our attempts to

further increase the potency of CTLA-4-blockade to enable the

rejection of larger more established tumors, we combined

Gvax ⁄ anti-CTLA-4 with Treg depletion. Depletion of Tregs is

being investigated in pre-clinical models and in clinical trials as

a cancer immunotherapy (174, 175). Despite enhancing T-cell

activity against a tumor antigen (175), Treg depletion does not

increase survival in melanoma patients (174). In agreement,

we found that Treg depletion following tumor establishment

significantly enhanced peripheral antitumor activity, although

increased activity did not protect against tumor outgrowth

owing to a lack of intercellular adhesion molecule (ICAM) and

vascular cell adhesion molecule (VCAM) expression by the

tumor vasculature and poor infiltration of Teff into the tumor

(120). Similar observations were made by the Ganss group

(176) in the RIP1-Tag5 pancreatic cancer model where they

found that treatment with the Toll-like receptor ligand CpG

and vaccination against the tumor antigen Tag prevents out-

growth of tumors in 5-week-old mice, whereas therapy fails in

23-week old-mice bearing established tumors despite similar

levels of systemic cytotoxicity towards Tag targets. The failure

in tumor protection correlated with reduced infiltration of vac-

cine-generated T cells into the tumor.

Approaches to overcome barriers in T-cell infiltration into

tumors

Since irradiation has been demonstrated to enhance infiltra-

tion of T cells into tumors and T-cell effector function (177,

178), we adoptively transferred polyclonal CD4+ and CD8+ T

cells harvested from mice previously treated with Gvax, anti-

CTLA-4, and depleted of Tregs into irradiated mice bearing

large tumors (120). This treatment protected mice against

tumor outgrowth and was associated with expression of ICAM

and VCAM on the tumor vasculature and infiltration of Teff

into the tumor. Once again, these findings were in agreement

with those from the RIP1-Tag5 model, where irradiation of

tumor-bearing mice prior to transfer of tumor-reactive CD4+

T cells resulted in increased infiltration of T cells into the

tumor, pro-inflammatory chemokine expression, and ICAM

and VCAM expression on the tumor vasculature, resulting in

slower tumor progression (179). Although our observations

regarding ICAM and VCAM and tumor rejection currently rep-

resent correlation rather than causation, it is likely they play a

key role in tumor rejection by mediating diapedesis of Teff

into the tumor parenchyma (180). The apparent dependence

of tumor rejection on ICAM and VCAM expression observed

in our model was in keeping with a previous studies demon-

strating for the first time an inverse correlation between the

expression of the endothelin B receptor (ETBR) on tumor vas-

culature and survival of ovarian carcinoma patients (181,

182). Furthermore, they demonstrated that ligation of ETBR

by its ligand ET-1 downregulates ICAM expression and that

neutralization of ETBR using a small molecule inhibitor

restores ICAM expression and adhesion of T cells to vessels.

When tested in mouse models of cancer, the combination of

immunotherapy and blockade of ETBR synergizes to greatly

increase infiltration of T cells into the tumor and reduce tumor

outgrowth. Together our data suggest that ICAM expression is

an important and perhaps limiting step in tumor elimination,

and therapies aiming at increasing its expression on the vascu-

lature may produce better antitumor responses. As a further

example, a recent study reported that IL-2 and agonistic anti-

CD40 antibodies targeted selectively to the tumor vasculature

with a peptide results in enhanced accumulation of T cells in

tumors and protection against tumor outgrowth (183). The

mechanism of protection involves the anti-CD40 antibody act-

ing directly on CD40+ vessels to upregulate ICAM and VCAM,

thus making the tumor receptive to T-cell infiltration. A simi-

lar approach involving targeting CpG-loaded liposomes to the

tumor vasculature with a peptide also elevated ICAM expres-

sion by tumor-associated vessels and made tumors receptive

to treatment with immunotherapy (184).

Accessibility to tumors is not only regulated by ICAM. Reg-

ulator of G protein signaling (RGS5) appears to be an addi-

tional key player controlling vasculature sprouting and

growth (185). In the RIP1-Tag5 system, genetic deletion of

RGS5 normalizes tumor vasculature resulting in improved

CD8+ T-cell infiltration into tumors after immunotherapy

(185, 186). These data suggest that therapeutic manipulation

of the RGS5 pathway in combination with immunotherapy

may enhance infiltration of vaccine-generated lymphocytes.

Quezada et al Æ Intratumor balance of Teff and Treg cells

112 � 2011 John Wiley & Sons A/S • Immunological Reviews 241/2011



Although a great part of many current immunotherapeutic

strategies focuses on the generation of more robust T-cell

responses, these considerations suggest that combination of

such therapies with strategies capable of sensitizing the tumor

vasculature and microenvironment will significantly synergize

to produce maximal T-cell infiltration and tumor destruction,

thus overcoming the observed discordance between local

intratumor responses and systemic T-cell activity.

Adoptive cell therapy (ACT) to overcome tolerance to

tumors

ACT generally consists of the transfer of large number of

activated Teff into lymphopenic tumor-bearing recipients

(187, 188). Although ACT may be considered a ‘brute force’

approach that simply depends on saturating the patient with

Teff, study of the mechanisms underpinning the efficacy of

ACT have generated significant insights into some of the basic

components required for effective rejection of established

tumors. A key component of ACT strategies is the state of

lymphodepletion induced in the host prior to T-cell transfer.

Lymphodepletion eliminates cytokine sinks, myeloid suppres-

sor cells (189), and Treg cells at the same time as providing

an environment favorable to homeostatic proliferation (190).

Host irradiation, used in many cases to induce lymphodeple-

tion, also contributes by sensitizing the tumor stroma (191)

and by inducing the upregulation of adhesion molecules on

tumor vasculature, thus rendering the tumor susceptible to

T-cell infiltration (177, 179). Furthermore, LPS is released

from commensal gut flora following radiation therapy. This

allows efficient maturation of DCs carrying tumor antigens

which can also be generated as a consequence of irradiation

(192). Hence, lymphodepletion acts like a ‘reset’ button capa-

ble of breaking the tolerogenic state originally induced and

maintained by the growing tumor. Based on these mechanistic

insights, we can postulate that approaches inducing short-last-

ing lymphodepletion (i.e. radio- or chemo-therapy) will

efficiently synergize with active immunization strategies

aiming at enhancing T-cell function. As a successful example,

combination of an agonistic anti-OX-40 antibody with cyclo-

phosphamide resulted in effective eradication of established

melanoma (140).

In addition to lymphodepletion, transfer of large numbers

of Teff in the correct stage of activation is crucial for the effi-

cacy of classical ACT (193). For years, ACT and the field of

tumor immunology in general have focused on the function

of tumor-reactive CD8+ cytotoxic T cells (CTLs) (194) reflect-

ing the fact that CD8+ T cells are considered the ultimate

effectors of the immune system, capable of directly engaging

and killing their targets. Although it is well known that CD4+

T cells contribute to CD8+ T-cell function (190, 195), more

recent studies attribute a potentially more direct role for the

CD4 compartment to antitumor immunity (196–198). Thus,

in vitro expanded and differentiated tumor-reactive Th17 cells

are capable of rejecting established melanoma tumors in mice

(199). Furthermore, the transfer of high numbers of tumor-

reactive CD4+ T cells into a patient with melanoma resulted in

a complete response (200). In addition, two recent studies

demonstrated that transfer of a small number of naive tumor-

specific CD4+ T cells into lymphopenic mice results in

rejection of large vascularized melanoma lesions (153, 201).

Surprisingly, the antitumor activity was not based in classical

T help but dependent in the acquisition of granzyme B-depen-

dent cytotoxic activity by tumor reactive CD4+ T cells (153).

The acquisition of cytotoxic activity by transferred tumor-

reactive CD4+ T cells distinguished our findings from previous

work showing that CD4+ T cells can help rejection of less

well-established tumors through indirect effects of IFN-c

(198) on NK cells (197) and tumor-infiltrating macrophages

(196, 202–204). Remarkably, CD4+ Trp1+ cells developed all

the hallmarks of CD4+ T-helper cells in addition to cytolytic

activity. Although CD4+ CTLs targeting viral (205–207) and

allo-antigens (208, 209) have been described previously, the

demonstration of similar activity in a more physiological

model for self ⁄ tumor antigen emphasizes the promise of these

cells in cancer immunotherapy.

Together these new advances in the understanding of

tumor-reactive CD4+ T cells demonstrate their capacity to

modify T-cell function as well as the tumor microenviron-

ment, thus becoming a powerful tool in the fight against can-

cer. Perhaps a better understanding and manipulation of the

function of this T-cell subset will provide all the necessary

components for the adequate resolution of the equilibrium

phase established during cancer immune-editing.
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