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We introduce a generalization of Wick-ordering which maps the anharmonic oscillator 
(AO) Hamiltonian for mass m and coupling h exactly into a “Wick-ordered” Hamiltonian 
with an effective mass M which is a simple analytic function of h and m. The effective 
coupling n = X/Ma is bounded. We transform the A0 perturbation series in h into one in A. 
This series may then be summed using Bore1 summation methods. We also introduce a new 
summation method for the A0 series (which is a practical necessity to obtain accurate 
energy levels of the excited states). We obtain a numerical accuracy for (&r - Ea..ot)/Esmcnet 
of at least lo-’ (using 20 orders of perturbation theory) and 1O-3 (using only 2 orders of 
perturbation theory) for all couplings and all energy levels of the anharmonic oscillator. 
The methods are applicable also to the double-well potential (DWP, the A0 with a negative 
mass-squared). The only change is that now the effective coupling is unbounded as h + 0. 
The series in n is, however, still summable. The relative accuracy in the energy levels for 20 
orders of perturbation theory varies from lo-’ for large coupling to 1 ‘A at X = 0.1 and to 
10 % at h = .05. We also present results for the sextic oscillator. 

I. INTRODUCTION 

Much of the information we have obtained from field theory has, of necessity, been 
obtained perturbatively. Perturbation theory has been an essential tool in the com- 
parison of realistic physical theories to the results of experiment. There have 
been many studies of the nature of perturbation theory, with the hope of understanding 
both its limitations and of finding methods to best utilize the perturbative results we 
do have. This is particularly important in many problems for which the perturbation 
series is only an asymptotic series [l]. The divergence of the perturbation series for 
QED was first qualitatively discussed by Dyson [2]. We will consider the much simpler 
case of the anharmonic oscillator (AO). 

The exact nature of the divergence (exponentially unbounded large-order behavior) 
of the A0 perturbation series was first studied by Bender and Wu [3], using WKB 
methods. They also studied the divergence of the Wick-ordered theory [4]. These 
results have recently been derived by Lipatov [S] and by Brezin et al [6], using path 
integral methods: they can also study general scalar theories in quantum mechanics as 
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well as renormalizable 42M theories. They exp licitly find the large-order behavior of 
the perturbation series about zero coupling. Most theories show a factorial growth 
of the terms in the series. 

The known large-order behavior of the field theory small-coupling (Rayleigh- 
Schrodinger) perturbation series has been useful in allowing very accurate resumma- 
tion of the asymptotic series for the anharmonic oscillator. Practically it has allowed 
the accurate calculation of critical indices in statistical mechanics [7]. The typical 
divergence of the series as En N n !, where E,, is the coefficient of h” and h is the 
coupling, suggests that we make a Bore1 transformation of the series (see Section V). 
The large-order behavior of the series then is used as a guide to the location of the 
nearest singularity of the resulting Bore1 transform. The energy (critical exponent,...) 
may then be written, by an appropriate transformation of the resulting integral, as an 
integral over a series convergent in the range of integration [7]. These methods give 
distinctly better results than the Pad6 method [8] or the Borel-Pad6 method [9], which 
make no (Pad&) or little (Borel-PadC) use of the known asymptotic behavior of the 
series. In addition to the analyticity properties of the summed series and of the Bore1 
transform of the series, there are exact transformations of the series which may be 
used to rearrange the series and to substantially improve its convergence. We introduce 
one such transformation, an effective mass method, which allows the accurate summa- 
tion of the A0 series for all coupling. 

There is particular interest in theories for which these methods do not work: non- 
Borel-summable series. One of the sources of non-Borel-summable behavior is the 
occurrence of many perturbative vacua in the theory and of the related instanton 
solutions which tunnel between these vacua. In the physically interesting theory of 
QCD (non-Abelian gauge theory with fermions), these solutions result in a parameter 
6, parameterizing the different vacua of the theory. This parameter occurs in the 
combination exp(i0 - 8r2/g2) where g is the gauge coupling constant [IO]. These 
cannot be seen in the usual perturbation expansion. The relation of these tunneling 
solutions to (Bore]) summability has been studied in the simple quantum-mechanical 
model of the double-well potential [ll]. The double-well potential (DWP) is the 
anharmonic oscillator with negative mass-squared (see Fig. 3). This system has the 
crucial property of multiple perturbative vacua and of an (analytically-known) 
instanton solution which goes between these vacua. 

As explicitly found by Brezin et al. [12], the perturbation series for the ground 
state of the DWP, when expanded about one of the degenerate minima, may be 
calculated by the study of the contribution to the path integral of pairs of instanton 
solutions. The terms in the perturbation series diverge like n! but do not oscillate in 
sign beyond the first term. This produces singularities of the Bore1 transform which 
occur on the positive real axis (on the integration contour). Attempts to sum this 
series have led to a study of the analytic structure of the DWP in the complex coupling- 
constant plane [13], as this is the crucial missing ingredient for the existence and 
uniqueness of the Bore1 transform of the series [14]. We show in this paper that there 
exists a summable perturbation series for the DWP in terms of an effective coupling. 
The success of this approach suggests that the DWP is analytic in the (open) right-half 
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plane, not quite enough for a unique Bore1 transform to be determined by the pertur- 
bation series. 

We now discuss in more detail the organization of this paper. 
The Hamiltonian for the A0 is 

(1.1) 

where m is the mass and h is the coupling. The interpretation of the coefficient of the 
harmonic term x2 as a mass comes from the one-dimensional field theory analogue of 
the above quantum mechanical problem (cf. Ref. [3, Appendix A]). 

The Rayleigh-Schrodinger perturbation series in the coupling h for the A0 is 
known to be Bore1 summable [9]. One may thus sum the series, with a sufficient 
number of terms, to any desired accuracy for a given coupling. For couplings much 
greater than one, or for energy levels much higher than the first few, this is a prac- 
tical impossibility. In both cases more of the terms are required than may be prac- 
tically handled. It is also possible, for any fixed number of terms considered, to find 
couplings large enough that the relative error (Eflt - Eeeact)/Eexact is arbitrarily large. 
It is often of interest in practical problems to know the result for large (or all) 
couplings. It is therefore of practical importance to discover better ways of using the 
perturbative information we have. In Section II we show how, by Wick-ordering the 
theory, we can transform the A0 perturbation series into one which is equivalent but 
diverges less strongly than the unshifted (non-Wick-ordered) series. Further, the new 
expansion parameter (effective coupling constant) is bounded as the A0 coupling 
constant diverges to infinity. Bore1 summation methods then allow us to sum the 
series, with the relative error being bounded for all couplings h. This series, with 
coefficients which we will call Enw, may be simply generated from the A0 perturbation 
series E, by reexpansion of the series using the binomial theorem. 

The Wick-ordered theory with mass M is equivalent to the A0 with mass m related 
to M by 

M2 = m2 + Cd/M. (1.2) 

It is related to the DWP by simply letting m2 + -m2 (see Eqn. l.l), 

M2 = -m2 + &i/M. (1.3) 

We show in Section II that the DWP energy levels for the Hamiltonian (1.1) with 
m2 + -m2 is given by the perturbation series EW evaluated at coupling h and mass M 
determined by (1.3). In some sense we have expanded the DWP about the analytic 
continuation of its maximum, not about its minimum. We are careful never to match 
perturbation series except for ranges of coupling and mass in which they are both 
valid, and we at no point have imaginary masses or energies. 

In Section III we show how, using path integral methods, a more general class of 
transformations of the perturbation series than Wick-ordering may be made. The 
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particular transformation we choose to focus on is the introduction of an effective 
mass into the theory which, for the Hamiltonian (1. l), satisfies 

M2 = m2 + PA/M (1.4) 

where fl is an arbitrary parameter on which physical quantities cannot depend. In 
Section IV we discuss how p may be chosen to obtain accurate results from perturba- 
tion theory. The best /? will depend on the energy level and on the number of terms in 
the series. We illustrate this method by finding accurate analytic approximations to 
the A0 energy levels from first- and second-order perturbation theory. 

Section V contains a non-rigorous discussion of the analyticity properties of the 
energy levels of EW (or in general E@) as a function of the effective coupling constant 
hE = h/M3. We are led to suggest that the DWP has a cut along the negative ImX axis 
as a function of its coupling constant A. We also suggest, using path integral methods, 
that the Bore1 transform of the series for E6 should have the same singularities in z as 
the A0 has but weaker by a factor e- 6. It is this simplicity of the analytic structure of 
the Bore1 transform that makes the effective mass perturbation theory summable and 
therefore useful. Whether other effective parameters (eg. an effective coupling constant 
subtraction) are useful is an interesting open question. 

The discussions of the DWP in Sections II and V would not be convincing if we 
were not able to show, at least numerically, that our claim that the transformed series 
converges to the correct energy eigenvalues is justified. It is possible to transform the 
series for the DWP about one minimum [12] into a “Bore1 summable” series. One 
way is to rotate the contour used in defining the gamma function introduced by the 
Bore1 transform. A second is to introduce r(2n) . r(--n + &) instead of the usual r(n). 
The methods converge but unfortunately to the wrong result, so one must be careful. 
We have done extensive studies of the A0 perturbation series through 20 orders of 
perturbation theory, and for the ground state (K = 0) through K = 10 energy levels. 
In Section VI we present results for the anharmonic oscillator and for the double- 
well potential. We use both Bore1 methods (which are practically restricted to small 
K) and a summation method based on the parameter /3 introduced in Section III. For 
the DWP we compare to variational calculations of the energy levels and find excellent 
agreement. 

The methods we have introduced here may be easily generalized to other systems 
than the AO. In Section VII we study the sextic oscillator (SO, with potential (mz/2) 
x2 + hx6), with both positive and negative m 2. The convergence of the summation 
methods is less rapid (the perturbation series coefficients grow like (2n)!; see Ref. [6]), 
but there are no surprises. This calculation could not have been done using the Wick- 
ordering method, as the x4 counterterm to the hx6 potential would have been difficult 
to handle. 

In Section VII we emphasize the simple connection to field theoretic methods. We 
believe that much of the freedom available in the renormalization procedure remains 
to be exploited, particularly in the calculation of universal objects such as critical 
indices. 
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Appendix A includes some of the details of the calculation of the A0 perturbation 
series. Appendix B shows how to extract the ground-state energy from the propagator 
in a one-dimensional field theory. 

II. WICK-ORDERING AS A RESUMMATION OF THE PERTURBATION SERIES 

We first study the introduction of an effective mass (equivalent oscillator) into the 
theory in a simple example: that of Wick-ordering. This will result in a series for the 
A0 energy levels that is similar to the non-Wick-ordered series (an asymptotic series 
which is summable) except it is in terms of an effective coupling which is bounded. We 
emphasize that this is, for the AO, merely a convenient trick. The theory need not be 
Wick-ordered, as the equivalent one-dimensional field theory has no divergences. 

We wish to study the energy levels (or (x2”), where the brackets mean expectation 
value in some state) of the Hamiltonian 

This may be rewritten as a one-dimensional field theory 

3v = &p f -:rn”cp + x+4 (2.2) 

where C(t) is a quantum field at time t and Q(t) is its conjugate momentum [3]. The 
energy levels are poles of the Green functions of the theory. To Wick-order this 
theory, we expand C$ and 4 in terms of annihilation and creation operators (for mass 

Ml 
+ = (ae--itM + u+&M)/(2M)lP 

Q = (- jae-itM + ja+eitM) M1/2/21/2. 
(2.3) 

We can then, using [a, a+] = I, find the Wick-ordered Hamiltonian :H:, with mass 
M and Wick-ordered relative to mass M. :H: is the Hamiltonian with all creation 
operators to the left of all annihilation operators. Then :H: is related to a non-Wick- 
ordered theory by 

(2.4) 

If we define a mass ma by 

m2 = M2 - &i/M, 

then the Hamiltonian SF of Eqn. (2.2) is related to :H: by 

X=:H:+;M-&. 
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To find the energy levels of #, we need only find the levels of :H:, where M is deter- 
mined by Eqn. (2.5). Most importantly, we may derive the perturbation series for 
:H: from the known series for X by making simple algebraic manipulations on 
Eqn. (2.6). Denote the energy of the A0 by E(h, m) and the energy of the Wick- 
ordered A0 by I?‘(& M). Then since 

E(h, m) = m f EN(A/m3)N, 
N=O 

(2.7) 

EW(h, A4) = M f ENW(h/M3)N, 
N=O 

the Wick-ordered series is simply 

EW(h,M)= E- ;M+ -& 

= M(1 - 6VM3Y2 f EN [(1 m2!;3)3,2]N - ; Ad + ; M(h/M3). 
N=O 

(2.8) 
Using the binomial expansion (h, = ~/MS) 

(2.9) 

we can find the terms EF [4]: 

Eow = K, (2.10a) 

E,w = $K(K - i), (2.10b) 

ENw = N EM-j 6jr(gN - +j - 4) 
c j=. j! r(gN - $j - +) (N 2 2). (2. IOC) 

K is the energy level being studied. The necessary EN are recorded in Appendix A. 
The effective mass equation (2.5) is a cubic equation in canonical form. We record 

its solution for a general mass shift /3 (j3 = 6 for Wick-ordering). If we set the mass 
m2 = 1 we must solve 3 

Iv2 = 1 + Bh/M. (2.5’) 

For y2 > 4/27, y = /3h, the real root is 

M = I(r + cyz _ 4/27)1/2)‘/3 + (y - (y2 - 4/27>“2)L’31/21’3. (2.11a) 



A0 AND DWP IN PERTURBATION THEORY 159 

For y2 < 4127 the root which equals the above root at y2 = 4127 is 

M = j& cos(&3), 

+ = cos-‘(y 33/2/2), 

0 < 4 < 742 for y > 0. 
(2.11b) 

The effective coupling h, = h/M3 is therefore a simple function of h and of m. Clearly 
from (2.5’) M > 1 and as h + co, we find M + co. However, h, = h/M3 + l/P--i.e., 
h, is bounded between 0 and l/j3 for the AO. 

For negative mass-squared (m” = - 1) we must solve the equation 

M2=-l+@lM (2.5”) 

which for /3, h > 0 has the solution 

M = [((y2 + 4/27)1/2 + y)1/3 - ((y2 + 4/27Y2 - Y)1’31/21’3. (2.12) 

This approaches X1f3/!N3 as X --f co, and 0 as X of 0, so that the effective coupling ha 
goes to infinity as h + 0. In Figure 1 we graph the effective coupling as a function of 
the coupling h in the Hamiltonian (Eqn. 2.1) for the A0 (m2 = 1) and for the DWP 
(m2 = - 1). For Figure 1, and for the rest of this section, we fix /3 = 6(Wick-ordering). 

To convince the reader of the usefulness of this transformation of the series, we 
will apply it to the A0 and the DWP. We combine Eqns. 2.8 and 2.10 (using only the 
first term of the perturbation series) i 

EK = M(K+ Q - gh, + gK(K- I)& + . ..) (2.13) 

where M is determined by (2.1 la) with /3 = 6. The ground state (K = 0) thus has the 
energy 

E” = M($ - &) . (2.14) 

The ground state energy is given by this formula to an accuracy of .02 for all couplings 
h. However, the energies of the higher states are less accurately given by (2.13); the 
accuracy (for X + co) is only .05 for K = 1 and .90 for K = 10. We may of course, use 
more terms in the perturbation series (PS). Because the series is asymptotic (see 
Sect. V), the results we obtain are much worse in large order (and for the higher 
energy levels, in low order also). We must therefore sum the series. 

We have summed the PS of the Wick-ordered theory for 25 orders. We used the 
Bore1 transformation and mapping methods of LeGuillou and Zinn-Justin [7]. The 
results for the ground state and the first two excited states of the A0 and the DWP are 
shown in Table I. The DWP is calculated using (2.5), (2.6), and the series (2.7) for the 
Wick-ordered energy levels. The higher excited states are not considered because 
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FIG. 1. Effective coupling & = A/Ma as a function of the Hamiltonian coupling h, for the Wick- 
ordered oscillator. M is determined by Equation (2.5’) for the anhamonic oscillator (lower curve) 
and by Equation (2.5”) for the DWP (upper curve). The lower curve fits X = &/(I - 6&)s/a and the 
upper curve fits X = hE/(6hE - l)s/a. 

summation methods work very poorly on these levels. The asymptotic size of the nth 
term in the series for energy level K is [4]. 

EmK - - (-)” 12K 61j2 
K! =313 

3”r(n + K + 4) 

The growth of the coefficient of the gamma function is, for moderate K, much faster 
than the growth of the energy of the level for large h and K [ 151: 

EKIP - 1.3765 * (K + +)*I3 (2.16) 

In Section III we introduce a more general effective mass shift. We introduce a 
parameter into the theory which is irrelevant in the sense that the energy levels cannot 
depend on the value of the parameter. In Section IV we show how this parameter can 
be used to optimize the energy estimate of the series in a way that works for all 
energy levels. It will also give us a polynomial (rather than an integral) to evaluate for 
each new coupling. 

The Wick-ordering result for the first (order A) estimate of the ground state energy, 
Eqn. (2.14), has been found previously by several authors. Chang [16] has used it 
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as a guide to calculations in 4” theories in two and four dimensions. We believe 
that our methods are more systematic and can be used to improve on his mean-field 
calculation of the effective potential. He does not show how to extend his calculation 
beyond leading order, as he believes his results to be essentially non-perturbative. 
Bender et al. [17] introduced the truncated Green function approximation. In leading 

TABLE I 

Results of Summing the First 25 Terms of the Wick-Ordered Series Using a 
Bore1 Transformation and the Mapping of LeGuillou and Zinn-Justin [7] 

Anharmonic Oscillator 

1 .803770651234 (1) 2.7378922679 (1) 5.1792917 (1) 

103 6.6942208505 (2) 23.97220602 (4) 47.01735 (3) 

106 66.800064630 (2) 239.3679844 (4) 469.6846 (3) 

Double-Well Potential 

x EO El ES 

.0391 .7 (1) 

.0494 .63 (2) 

.0988 .473 .762 (4) 1.9 (5) 

.I98 .398 1.01 2.15 

a For higher energy levels the series converges less well. For the double-well potential the variational 
estimates of the energy levels are listed in Table V. Estimated errors are in parentheses. 

order it is easy to show diagrammatically that their lowest order is the Wick-ordered 
theory in tree approximation, the first term of Eqn. (2.13) Their second-order approxi- 
mation sums up all propagator graphs through four loops (and many higher-order 
graphs). Their value for the single-particle pole (K = 1 quantum level) is then within 
.7 % of the exact value for all couplings. It is therefore surprising that by using only 
two orders of perturbation theory (only two-loop diagrams in Feynman diagram 
language) we obtain an accuracy of .05 % for all couplings for the K = 1 level. Their 
method is a low-energy approximation, as is Wick-ordering, and the methods we 
introduce in Section IV will give much more accurate energies for higher excited 
states. Further, the extension to higher orders is quite easy using the effective mass 
method, while the truncated Green function method requires the solution of coupled 
integral equations. 
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III. PATH-INTEGRAL GENERALIZATION 

We may look at Wick-ordering as just one of a large class of possible transfor- 
mations (resummations) of the perturbation series. It is natural to look at the path- 
integral formulation of quantum mechanics to study transformations which leave 
the theory invariant. We refer the reader to Abers and Lee [18] for a concise review 
of path integral methods. For a Hamiltonian of the form 

2 = $-pz + V(q), (3.1) 

we may define the Lagrangian 

L = Qfj2 - V(q) (3.2) 

and the action 

S = $ L(q, cj) dt. (3.3) 

The ground-state expectation value of a time-ordered product of coordinates (which 
in field theory are the Green functions) may be evaluated from W[JJ, where J(t) is 
an external source and 

W[J] 01 lim T’+-,CO 
T +  Im 

1 &I exp [i Jr” @(q, 4) + J(t) q(O) dt] (3.4) 

The energy levels (except for the ground-state) are found as the location of poles 
of the Green functions. We can, of course, study the Green functions as well as their 
poles in the following. The ground-state energy has not been lost; we show in Appen- 
dix B how it may be recovered from the propagator. 

The Lagrangian L(q, Q) is for the A0 

L(q, 4) = $4” - $m2q2 - hq4. (3.5) 

When inserted in Eq. (3.4), it defines the theory. Consider the operation of adding 
and subtracting the quantity @hq2/M to, L: 

L(q, 4) = i pz - i (mz + &i/M) qe - hq4 + t g q2. (3.6) 

This will clearly not affect the Green functions. If we define the mass M by 

M2 = m2 + ” 
M’ (3.7) 



A0 AND DWP IN PERTURBATION THEORY 163 

the Lagrangian which generates the PS is 

1 PA L(q, 1) = ; 4” - ; M2q2 - Xq4 + z M q2. (3.8) 

The PS for the energy is, by dimensional analysis (or more generally by scaling [8]), 
of the form 

E(X, M) = M f  EsB(h/M3)“. (3.9) 
?l*O 

This should be compared to the series for the unshifted theory 

E(A, m) = m f  EIL(h/m3)12. (3.10) 
?L=O 

These energies are equal. If we write A, = h/M3 and solve Eqn. (3.7) for m 

m = M(l - /3hE)lL2, (3.11) 

we may generate the series E,,B from the known series E,, . This is done by matching 
the series in h, , as we did in Section IT: 

(3.12) 

For p = 6 this reproduces the Wick-ordering result (the first two terms in the series 
are defined differently). The solution for the effective mass M(X, m) is recorded in 
Section II. 

If we let m2 -+ -m2 (the double-well potential), the only change in the above is that 

M2 = -m2 + /%/M. (3.7’) 

The series for E(h, M) is now known (by expanding [Eqn. (3.12)]), so we may cal- 
culate 

EDwp (A, m”) = E(h, M). (3.13) 

We at no point need to explicitly expand the path integral about its maximum. 
We simply use the now known series for E(h, M). The effective mass M is, however, 
no longer bounded below by m, and the effective coupling h, goes from l/p (at 
h = co) to co (at h = 0). In the next section we use the freedom of choice of the para- 
meter /3 to find excellent low-order estimates of the A0 energy levels. 

There are many other possible transformations we have not explored. We could 
add and subtract terms of the form w’12/m3q4 or /%d2/M4q2. We could do two trans- 
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formations at once to find A = h + aA2/M3 and M2 = m2 + PA/M. We do not 
know if the resulting series may be summed. 

Formal transformations of the path integral to simplify practical calculations 
(though not to transform the series) have been introduced previously. The form 
closest to ours is used by Nickel.[l9] He defines the transformation 

m2 = M2 - Z(0, M) (3.14) 

where Z(0, M) is the self-energy part of the single-particle propagator evaluated 
at mass M. The lowest-order approximation is then Wick-ordering, but M is trans- 
formed further in higher orders. Since Z(0, M) is an asymptotic series itself, this 
equivalence produces a series for the physical mass (location of the single-particle 
pole) which is asymptotic and must be summed. The method is a useful calculational 
device and may hint at how to extend our series transformation technique. 

IV. LOW-ORDER CALCULATIONS 

We have shown that we may introduce a parameter /I into the perturbation series 
on which the energies and wave-functions of the summed theory do not depend. 
We can hope that, for particular choices of j?, the PS may diverge less rapidly or the 
effective coupling may be smaller. We could then find the energy levels more 
accurately. We found in Section II that for fl = 6 (Wick-ordering) the A0 series 
may be resummed to give accurate results for all couplings (Table I). 

The choice of the variable /I is also crucial to the choice of series summation method 
that we use. If the series has not yet reached its asymptotic behavior (in particular, 
the oscillation of sign), then the summation methods will not work. Numerically, 
we must subtract off the terms in the series that are not properly asymptotic and 
apply summation methods to those that are left. A large value of p postpones the 
oscillation in sign. A value of /3 around the order of perturbation theory studied is 
adequate to ensure that none of the usual summation methods work. We shall show 
that it is possible to choose /3 such that summation methods are not necessary. We 
will obtain a series in an effective coupling, which converges to the A0 energy levels 
for arbitrary coupling. 

We illustrate how we choose p by studying the first two orders of perturbation 
theory. We will find both accurate approximations to the A0 energy levels and a 
method for fixing /3 that is valid to all orders of PT which we we have studied. We 
have chosen for simplicity to study only constant fl, which depends on the order of 
perturbation theory and the energy level considered but not on the coupling. Because 
the energy is independent of /3, it is natural to require that the derivative of EnK(h, /3) 
with respect to jI be zero. Here K is the energy level studied and n is the order of 
perturbation theory. This /I could depend on X, the coupling. Because the energy 
estimate is already expected to be accurate for small couplings, we have chosen to 
require that 
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where 

For the first order of perturbation theory, we have 

EoK and EIK are listed in Appendix A, and we have set the mass m 
series is defined by Eqn. (2.10~) with 6 replaced by /I. To this order, 

(4.la) 

(4.lb) 

(4.2) 

1. The shifted 

(4.3) 

where M is determined by Eqn. (2.11). In the limit X -+ co the effective mass M 
is simply M = /31KV/3. The scaled energy, Eqn. (4.lb), is then 

&@) = /3113Eo/2 + /3-2/3El. (4.4) 

Equation (4.la) fixes fl: 

fl = 4E,/E,, = 6(2K2 + 2K+ 1)/(2K + 1). (4.5) 

Note that for the ground state (K = 0), we find p = 6. For the ground state, to 
leading order in PT, Wick-ordering is the best we can do. For K # 0 we can do better. 
The energy is to this order 

E,(h) = M (K + ; - ;$(2K2 + 2K + 1)) (4.6) 

where M is determined from Eqn. (2.11) with fi from Eqn. (4.5). This simple formula 
fits the energy levels of the A0 to 2 % for the ground state, 14 % for K = 1, and 
1% for K > 1 for all couplings. As we show below, the agreement may be syste- 
matically improved using PT. 

For two orders of perturbation theory the analogue of Eqn. (4.4) is 

E,(B) = B1’“t3E, + 23%/B + G/83. 

This has an extremum for 

(4.7) 

/3 = (8E02 + 2 j-(22/3E04 - 143/6E02 + 4)l/3/Eo (4.8) 
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where E, = K + 4. For the ground state and first excited state, /I is imaginary and it 
is natural to take the real part, 

~=(8E02+2)/Eo,K=0,1. (4.9a) 

For K > 2 we must choose among the roots of Eqn. (4.8). We have found that the 
best choice of j3 is the (real part of the) root at which the second derivate of ,!@3) is 
of the same sign as the last term of the series, in this case negative because EZ is 
negative. When there are many roots (in nth order PT there are n roots), we choose the 
one where the second derivative of &/I) is smallest in magnitude. We therefore choose 
the minus sign in Eqn. (4.8), 

j3 = (8E02 + 2 - (22/3E04 - 143/6E02 + 4)l/“)/E,, , K 3 2. (4.9b) 

The conditions on the derivatives of B(p) reflect the p-independence of the energy. 
With this /? the series (3.9) through second order gives an analytic approximation to 
the energy levels of the A0 which is accurate to .005 for all energy levels (and to 
.OOOl for K = 0, .OOl for K > 6) for all couplings. 

The accuracy of the shifted series (3.9) is strongly affected by the exact choice of /3. 
To two orders, the above criteria fix /3 to within .5 % of its best value. It is important 
to at least that accuracy in higher orders. 

The effective oscillator method of Hioe et al. [20], used to study the A0 for large K 
and small X, has a similar starting point to ours. If we were to exactly cancel the first- 
order term in perturbation theory (/3 = 2E,/E, N 3(K + +) in the large-K limit, for 
the AO), we would reproduce the “renormalized” oscillator and the PS of their 
Section V. The PS in our approach is asymptotic and may, of course, be summed. 
They write their series in terms of what we would call p& . They observe that the 
[0, I] Pad6 approximant for the energy minus the equivalent oscillator energy is closer 
to the known value than the [l, 0] approximant. While the diagonal PadC approxi- 
mants to the series will, in fact, converge to the correct answer, the series for the 
inverse (which they use) is not convergent. 

V. GENERAL PROPERTIES OF THE SHIFTED PERTURBATION SERIES 

We first wish to study the Bore1 transform of the new perturbation series. The 
location of the singularities of the Bore1 transform will tell us the leading asymptotic 
behavior of the series and will also tell us which summation methods will work best 
[7]. We follow ‘t Hooft’s analysis [lo] of how to find the singularities of the Bore1 
transform from the path-integral formulation of the quantum theory. The Bore1 
transform F(z) of a Green function G(h) is defined by 

G(h) = sm F(z) e-z/A dz 
0 

(5.1) 
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Our field theory is in one dimension, so the Green function (or more generally the 
vacuum-to-vacuum amplitude in the presence of an external field J) may be written in 
the Euclidean form [18] 

(5.2) 

where the action 

A = j dt (B@ + Sb”(l - PA) + W) (5.3) 

We have taken the mass M in the Lagrangian (3.8) equal to 1. We rescale the fields by 
4 + &(h)lla and find a new action 

A = - $ j- dt B” + A/h 

A = s dt ($ + ; 6” + p) 

(5.4) 

Equation (5.2) in terms of A is, dropping normalization factors, 

G(h) = s [3$] exp 1; i dt p/ exp{-J/X> (5.5) 

The simple form of the p-dependence in (5.5), and the consequent simple form of the 
change in the location of the Bore1 transform singularities, is a result of only doing a 
mass-shift in the effective Lagrangian. Comparing (5.5) to the definition of the Bore1 
transform (5.1) we see that we may take 

We can determine F(z) by finding all solutions of a@] = z, which we call Bi(z). The 
integral is then evaluated to be 

(5.7) 

The singularities in the z-plane are therefore at solutions of Sri($)/@ = 0, the classical 
field equation of the system. At such a solution 2 = A($) and there is a square root 
branch point at z = I [IO]. These are just the usual singularities of the anharmonic 
oscillator. The exponential terms can have additional singularities only if exp(p/2 
J dt 6”) has singularities in z at solutions of z = A($. These cannot be simply the 
shrinking of the integration contour to a point, and appear unlikely. 



168 WILLIAM E. CASWELL 

To find the location of the leading singularity of the Bore1 transform we define bC 
as a solution to the classical field equation 

Bc = A + 4+C (5.8) 

This has the solution 

cjo = i/cash(t) (2)‘/” (5.9) 

Note that this solution is an instanton - it is clearly localized in the Euclidean time 
variable t. The singularity Z is at 

= -l/3. (5.10) 

The leading contribution to the singularity of the Bore1 transform is therefore the 
usual result [7] multiplied by Eq. (5.7): 

The leading large-order behavior of perturbation theory is determined by this sin- 
gularity. For the A0 the large-order behavior of the shifted theory is in leading order 
the same as that of the unshifted theory multiplied by exp (--p/2). This result is 
obtained in a more direct way by Bender and Wu [4]. From their method we easily 
find that the XZM oscillator, M > 2, has a large-order behavior unchanged by the 
shifting of the mass. The simplest derivation of the leading large-order behavior is 
found by simply treating the mass-shift term as a (renormalization) counter-term [6]. 

We wish to comment on the analyticity properties of the energy levels E(h) of the 
DWP. We have shown in Section III that the energy of a double-well oscillator 
E(h, -ma) may be exactly calculated as the energy of the effective Hamiltonian 

1 1 P X = z cj2 + 2 M2q2 + hq4 - 2M q2 (5.12) 

where M2 = -m2 + @i/M and /I is an arbitrary real number. The ability to rewrite 
the series in this way, in terms of the effective coupling hE = X/M3, leads us to discuss 
the analyticity properties of the energy expressed in terms of h, . As we show below, 
these appear to be simple, and can help us understand the more complicated analytic 
structure when expressed as a function of h. From the analysis of this section, sup- 
ported by the numerical studies of Section VI, we believe that the DWP has a Borel- 
summable asymptotic series in h, . This suggests that the energy E(h, , M) is analytic 
in X, at least in the range --r/2 - f < arg X, ==c rr/2 + E (and probably in the cut h, 
plane). 
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Some results on the analyticity of the DWP energy levels are easily obtained using 
(5.12). All the results on regular perturbations are true (Simon [8]). The energy l? = 
E + /3h2/16m2 is Herglotz, and thus has no poles or essential singularities [8]. If we 
assume that E(&) is in fact analytic in the cut hE plane [21], the cut maps by Eq. 
(2.5”) into the negative Imh axis from Im h = 0 to -2//3 and back to zero. There is 
also a pole contribution - 1/16h that shifts the zero of energy to the minimum of the 
well. This is consistent with the known analyticity structure of the DWP. Crutchfield 
[13] finds a region of analyticity consistent with a circle in the h plane centered on the 
real axis and tangent to the imaginary axis (thus not including the Im X axis). 

VI. HIGH-ORDER CALCULATIONS (A0 AND DWP) 

We have extended the calculations discussed in Section IV to 20 orders of perturba- 
tion theory, This was both to study the convergence of the mass-shifted series and to 
study the choice of the shift term /3. Our main object was to study the convergence in 
the DWP regime-to demonstrate both that the method worked and that it could be 

v,, (xl 

i 

- 

4 

FIG. 2. Anharmonic oscillator for mass m2 = 1 and coupling h = 0.1. The dashed lines are the 
energy eigenvalues for the three lowest energy levels. 
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extended (in theory at least) to arbitrarily small DWP coupling. We believe that the 
only limit on our accuracy here was the intrinsic accuracy of double-precision (14- 
place) arithmetic on the computer. There are large cancellations in the asymptotic 
series, and this emphasizes the numerical errors in the calculation of /3. The choice of 
20 orders (which may be optimistic) was motivated by more extensive studies of the 
ground-state energy approximations and by the similar limit found by Simon [S]. 

TABLE III 

Coefficients of the Shifted Perturbation Series 
(to Order 20) for the Ground-State Energy 

Level of the Anharmonic Oscillator” 

OS- D 00 

-0.6523534322394895 D 01 

-0.3370869857187187 D 02 

-0.3048686635875011 D 03 

-0.3064233001381720 D 04 

-0.3072648903641905 D 05 

-0.2904081280474071 D 06 

-0.2428494513666112 D 07 

-0.1548612132433587 D 08 

-0.2216637357312011 D 08 

0.1508138983335937 D 10 

0.3475838196620312 D 11 

0.5371021199564374 D 12 

0.6735744906815999 D 13 

0.6997971786427200 D 14 

0.5562799670927359 D 15 

0.1928995594960896 D 16 

-0.3969867511129701 D 17 

-0.1230034221431521 D 19 

-0.1874198474433704 D 20 

-0.4051846902688923 D 21 

LI The mass M is determined by Eqn. (3.7) with the 
parameter fi = 29.09413728957958. The resulting 
polynomial fits the ground-state energy to at least one 
part in 108 for all couplings. 

We record the energies of the AO, for a representative set of couplings and levels, in 
Table II. We show the lower energy levels for the A0 with h = 0.1 in Figure II. There 
are several accurate compilations of non-perturbative numerical results on the A0 
energy levels to compare to. The most extensive are tables to 9-figure accuracy by 
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Hioe and Montroll [15]. Less extensive, but in some cases more precise, values have 
been tabulated by Biswas et al. [22]. We agree in almost all cases with these authors to 
the accuracy we quote [23]. In some cases, particularly for h < 1, our results are 
more precise (we are inherently perturbative). There are other methods for finding 
accurate estimates of the A0 energy eigenvalues [24]. 

This agreement gives us faith that our method is correct and out error estimates are 
reasonable. Much more extensive tables could easily have been generated, since once 
the polynomial is generated further values are found simply by a polynomial evalua- 
tion. A reasonable estimate of the uncertainty in the quoted numbers would be 
several times the quoted error (which was found by estimating the rate of convergence 
of the series as more terms were taken). The series will sometimes appear to converge 
to a value for several orders of perturbation theory and will then jump to a new value, 
nearby but clearly closer to the known value. 

The effective mass parameter /3 was chosen as described in Section IV. We can 

“o,,(x) 

4 

3 
---- 

2---- 

,----- 

FIG. 3. Double-well potential for mass mr = 1 (anharmonic oscillator with mass ma = -1) 
and coupling X = 0.1. The dashed lines are the energy eigenvalues of the five lowest levels, calculated 
using the perturbation series (Table IV). 
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estimate its value by simply requiring that the lowest-order term, times /P, be of the 
same size as the nth order term. This estimate is correct within a factor of three and 
shows that the effect of p is to at least partly cancel out the higher-order terms. A 
sample polynomial which this method generates is the one for the ground state of the 
A0 in 20th order, which we present in Table III. 

TABLE V 

Comparison of the Series Prediction of the Energy Levels of the Double-Well Potential, 
Using 20 Terms of the Perturbation Series, to a Variational Calculation [25] 

x EO var var 

.0272 .67616 .67790 

.0391 .6517 .61 (15) .6703 
.0494 .55 (6) .6192 .67 (1) .6730 
.0988 .473 .473 .765 .773 
.198 .398 .398 1.01 1.01 

h 4 var -& var 

.0272 1.83 1.92 

.0391 .33 (3) 1.60 1.82 (6) 1.93 

.0494 1.39 1.51 2.01 2.02 

.0988 1.63 1.63 2.56 2.56 

.198 2.15 2.15 3.46 3.46 

h E4 var E6 var 

.0272 3.7 (2) 2.63 2.9 (1) 3.12 

.0391 2.65 2.63 3.36 3.36 

.0494 2.79 2.79 3.65 3.66 

.0988 3.66 3.66 4.89 4.90 

.198 4.97 4.96 6.61 6.62 

A & var 4 var 

.0272 3.81 (5) 3.82 4.54 (2) 4.55 
-0391 4.21 4.21 5.12 5.13 
.0494 4.61 4.60 5.64 5.63 
.0988 6.22 6.20 7.64 7.63 
.198 8.39 8.42 10.3 10.3 

x -5 var 

.0272 5.33 5.44 

.0391 6.10 6.11 

.0494 6.74 6.76 

.0988 9.14 9.13 

.198 12.3 12.7 

a If there is no entry in the table, the series showed no signs of convergence at that coupling. 
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The same methods we used for the A0 were applied to the m2 --t -1 case, the 
DWP. Here the effective coupling goes to infinity as the coupling goes to zero, so that 
poor convergence is found in that region. In Table IV we record the energy levels we 
found, with their estimated errors, for a range of couplings of the DWP. The energies 
are measured with respect to the bottom of the well. The lower energy levels are shown 
for h = 0.1 in Figure III. To convince the reader that our series converges to the 
correct DWP energy eigenvalues, we have also compared our results to variational 
calculations of the energies [25]. The comparison is made in Table V. Their choice of 
couplings fortunately covers the region in which good convergence is obtained (h 
large) to the small X region where the summed series does not converge well. The 
agreement is excellent. There is no perturbative estimate of these energies from 
ordinary perturbation theory, except for very small coupling. The usual PS about a 
minimum of the potential is asymptotic but does not change in sign (and thus is not 
summable) [ 121. 

We have found that more orders in perturbation theory extend (albeit only very 
slowly) the region of coupling in which a given accuracy is found. There appears 
(numerically) to be no theoretical block to obtaining an arbitrary accuracy using many 
higher orders of PT. The situation is comparable to that for the usual PS for the A0 
with large coupling. We believe that our series summation could, in general, be 
limited by a phase transition at some coupling. There is no phase transition possible 
in one dimension, and so we should be able to sum the series for arbitrarily small 
couplings. 

VII. SEXTIC OSCILLATOR 

To illustrate these methods further, we also treat the sextic oscillator (SAO), which 
has the potential 

V(X) = $m2x2 + hx6. (7.1) 

The sextic oscillator perturbation series diverges much more rapidly than the x4 series 
does. The nth term diverges for large IE approximately as (-)” (2n)! [26J. We will be 
able to see how the convergence of the series is affected by this more rapid growth. 
The procedure found for choosing /3, in Section IV, is adequate here also. The Wick- 
ordering method of Section II is not directly applicable here-the x6 term generates 
an x4 counterterm that does not appear in the unshifted potential. 

The equation for the effective mass is now 

M2 = m2 + ~XIM2. (7.2) 

This is a simple quadratic in M2 and has the solution (choosing the one with the 
correct X = 0 limit) 

M = (m” + (m4 + 4@)1/2)~~z/(2)~~2. (7.3) 

595112311-12 
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The solution for the double-well case (SDWP) is simply obtained by letting m2 + -m2. 
The equivalent shifted series is generated by the analogue of Eqn. (3.12), remembering 
that X, = A/M4: 

EyA,) = (1 - /3X&2 E&/(1 - /3h#). (7.4) 

The leading term in the perturbation series for the energy level K is simply calculated 
(Appendix A) to be 

El = ; E,,3 + ; E,,. 
(7.5) 

Following the same procedures as in Section IV, we find the extremum of the energy 
asX+cc, 

-%?fl) = ? /?1/4 + (; Eo3 + 7 E,)) p-314 (7.6) 

occurs for /3 = 15(E,,2 + 2). With A4 defined by Eqn. (7.3) and this /3, the energy of the 
sextic oscillator is 

E&m) = M(E, - 2XEJM3 (7.7) 

This formula is accurate to 7 % for the ground state, 5 % for K = 1, and at least 3 % 
for all other states. The next order correction gives at least 2 % accuracy for all energy 
levels (though for K = 2 and 3 the agreement is slightly worse than the first order 
correction-this is not true in higher orders). 

We report in Table VI the results for the SAO for 15 orders of perturbation theory. 
The values reported are all consistent with other tabulations of the energy levels. [20] 
However, the error estimates for the ground state are about a factor of ten smaller 
than the difference from the known eigenvalues. The internal consistency error 
estimate can easily be misleading. Such false convergence also appears in lower 
orders of the A0 energy calculations. There it disappeared in one large jump (com- 
pared to the estimated error) and converged to the correct value in higher orders. 
This points out a need to find other ways to estimate the approximate (or maximum) 
error that is being made. Such problems are also found using any other summation 
method [271. 

The SDWP energy levels are found by simply letting m2 + -m2 in the formulas of 
this section and shifting the energy so that the zero of the energy is at the bottom of 
the well: 

E&m) = E(X, -m2) + 1/3/(6X)lj2. (7.8) 

The results for selected couplings are shown in Table VII. These values also exhibit 
the (low order) false convergence noted above. Quoted errors, particularly for the 
ground-state energy, are too small. 
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VIII. CONCLUSIONS 

We believe that some variant of these methods should be applicable to field theories 
in higher dimensions than one. All the PT calculations in this paper could have been 
done using Feynman diagrams and bound-state equations. The complications of 
renormalization also allow great freedom in the choice of renormalization scheme 
employed. For particular choices of renormalization scale this has already been 
exploited to obtain more accurate perturbative results. This has been used in QCD [28], 
where one is led to choose a scale on the size of the relevant momenta in the problem 
considered. In our problem we chose a different /3 for different energy levles. There is 
much more freedom in the choice of finite renormalization for masses and couplings, 
that is similar to the freedom exploited here. The problem of the best renormalization 
scheme for a given problem has not been comprehensively studied. 

It is surprising that we can find accurate values for the h --f co limit (which is just 
the zero-mass field theory) by introducing an effective mass into the theory. The 
calculation of numbers which are both renormalization independent and characteristic 
of the zero-mass theory-eg. critical indices in 4 2M theories in two and three dimen- 
sions-may also be aided by using variants of the methods of this paper. This is 
particularly so if some of the series have large non-asymptotic parts in low orders of 
PT that can be removed by a proper choice of effective mass. 

The use of transformations of the series, such as we have discussed in this paper, is 
very similar in spirit to the usual resummation methods. These methods (Pad& Borel) 
use specific analyticity information of the quantity approximated to improve the 
convergence of the series. We use formal transformations of the defining path 
integral to improve the convergence. The study of the best way to use perturbative 
results is clearly an important part of any practical calculation. We believe our 
method is one very effective way to use perturbative information. 

APPENDIX A 

The calculation of the terms in the perturbation series for the energy of any level of 
an arbitrary anharmonic oscillator may be reduced to the straight-forward iteration 
of an algebraic recursion relation [3]. The simplest form of these relations, which 
also gives us the coefficients for the series of (X2”>, has been derived by Swenson and 
Danforth [29]. This method is both very efficient and requires only a trivial change 
(the unperturbed energy) to treat higher quantum states. We refer the interested 
reader to their paper for a simple derivation of the recursion relation. We illustrate 
its use here. 

For the potential 

V(x) = 4x2 + hX2M (A-l) 

we define the expectation of an operator A in a quantum state K by (A)K. The expec- 
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tation value of X2N has the perturbation series (we drop the index K in all further 
formulas) 

(X2*) = 5 Qi*#. 64-2) 
i=O 

The eigenfunctions of V(X) are eigenstates of parity, so (X*) vanishes for N odd. 
Normalization of the exact wave function is (1) = 1. This implies 

The Hellman-Feynman theorem implies 

(A-4) 

This relates the coefficients of the perturbation series for the energy E = Cfo hiEi to 
those for (X2M), 

Ed = Q&/i. (A-5) 

The desired recursion relation is 

N+l QL = e ,+GL GQj" 

+ (2N + l) N(2N - ‘1 et-1 _ (2N + ’ + M) Q;Tlbf 

4W + 1) Nfl 
(A-6) 

where QS = 0. If we lay out a table for QLN with N increasing to the right and L 
increasing to the top, the left-hand column is given by Eqn. (A-3). For L = 0 we can 
solve for QoN for arbitrary N, in terms of the unperturbed energy E. , by starting at 
N = 1 and moving to the right. Since the recursion relation depends only on terms in 
the line below (and at most M - 1 to the right) or on terms to the left but not above 
(not larger L), we can do the same for L = 1 as we did for L = 0: solve for N = 1 
and continue to the right. Repeating this until we get to L = N - 1 allows us to find 
the perturbation series for the energy to order N. We need only a finite number of 
Q’s on any line since the last term requires only up to A4 - 1 terms to the right. For 
example, for Nth order perturbation theory we will only need, for L = 0, Qol through 
Q[““. All terms are polynomials in the unperturbed energy E,, . 

In terms of the unperturbed energy E. = K + 4, the first six terms in the perturba- 
tion series for the A0 are 
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E,,=K+; 
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17 67 
-E,=-;?-E,,3+16E,, 

E, = g &,4 + !$? E,,2 + g 

-m-E4 = T E,5 + !!$ E,3 + ??!&l E,, 

E 
5 

= 87549 
64 4,’ + 58;:5 E64 j 93;;;: E,2 I ‘42”0”4’8” 

-E 
6 

= 3132399 E,’ + 124;‘@$73 E65 + 917;4;17 E63 + lo”;;;;43 E,. 256 

(A-7) 

This sort of calculation is trivial using MACSYMA and may be easily performed to 
20th order without approximation. 

APPENDIX B: CALCULATION OF THE GROUND-STATE ENERGY IN FIELD THEORY 

The calculation of the perturbation series used in this paper could have been done 
using the usual Feynman diagram methods of field theory [3] rather than the quantum 
mechanical methods of Appendix A. The poles of the Green functions are the excited 
states of the theory and are located at E, - E,, , where E,, is the ground-state energy. 
It is surprising that, knowing the propagator of a one-dimensional theory, we can 
easily reconstruct the ground-state energy. We give a simple derivation of this fact 
using path-integral methods [18]. The vacuum-to-vacuum amplitude for a one- 
dimensional quantum system is 

= exp(--iE,T) (B-1) 

Here T is the difference between final and initial times, and for T large all other 
contributions are exponentially negligible. The generator of connected Green func- 
tions in the presence of a source J, Z(J), is calculated from the following path integral 
(where we use (B-l) for the normalizing integral and Z(0) is defined to be zero): 

iZ(J) = In IJ [&I ew /i j dt CQ, 4) + Jd\ 1 - %T. (B-2) 

All time integrals are from -T/2 to T/2, with T -+ -im at the end of the calculation. 
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The effective Lagrangian for a theory with potential V(q) = $m2q2 + Aq2N is 

WI, 4) = QP” - %I). (B-3) 

We may take the derivative of (B-2) with respect to either the mass m or the coupling 
h to get (for J = 0): 

; gj = - (J dt qe(t)),JT, 

fg+ = - (J- dt q2v))J4/T. 

(B-4a) 

Defining the two-point (and n-point) functions as appropriate functional derivatives 
with respect to J of Z(J), and integrating over the relative coordinates of the resulting 
Green functions, we obtain, for example, 

The momentum integrals are from - cc to co. Combining (B-4) and (B-5), we find 

dE, m dm = j m2G(p) $ u-3-6) 

and a similar equation for dE,/dh. By applyingl dX[S/SJ(X)] to the equation of motion 

we obtain the identity (for J = 0) 

j dX (q(X)(-a2 - m”) q(X)) + iT 6(O) = 2Nh I dX (q2N(X)). 03-8) 

Using (B-4b) and Fourier transforming, this becomes 

I % (G,-‘(p) G(p) - 1) = 2Nh 2 (B-9) 

where G,(p) = i/(p” - m2) is the bare propagator. Carl Bender suggested Eqn. (B-9) 
to us as an empirically true and useful formula for the A0 (N = 2). Dimensional 
analysis on E,,(m, h) requires 

d-% dE, mz+(N+ l)Ax=Eo. (B-10) 
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We may combine (B-6), (B-9) and (B-10) to obtain a form for the ground-state 
energy as determined by the (one-particle-irreducible) single-particle propagator 
G(P): 

E,,=~&n?(Gp)+i- “2+N ’ (G,‘(P) G(P) - I,]. (B-l 1) 

The energy E,, is measured from the minimum of the potential (for G(p) = G,,(p), 
E,, = m/2). Using (1.2) and the propagator G(p) = i/(p2 - Mz), we reproduce the 
result for the ground-state energy found using the Wick-ordered oscillator [Eqn. 
(2.14)]. A potential with more terms (iVI , N, , etc.) would require higher Green 
functions to find E,, [see eg. Eqn. (B-5b)]. 
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