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The production of o(~) particles in a weakly-coupled theory is believed to be non-per- 
turbatively suppressed. I comment on the prospects of (a) establishing this rigorously, 
and (b) estimating the effect to exponential accuracy semiclassically, by discussing two 
closely-related problems: the large-order behavior of few-point Green functions, and in- 
duced excitation in quantum mechanics. Induced tunneling in the latter case is expo- 
nentially enhanced for frequencies of the order of the barrier height. 

1. I n t r o d u c t i o n .  The issue of baryon- and lepton-number violation in the s tandard electroweak 
model [1-3] has brought back to the limelight the limitations of per turbat ion theory. The problem, in a 
nutshell, is that  naive weak-coupling expansions cannot be used to estimate processes in which a large 
number of particles is involved. If we denote for instance by N - f i  the number  of W bosons produced 

in a high-energy collision, then an expansion of the inclusive cross-section in terms of Feynman diagrams 
corresponds to expanding simultaneously in the gauge coupling g and in v. This is of no use if one is 
interested in the region g -+ 0 with v held fixed and not small. Indeed the leading-order result for this 
process, whether  accompanied [2] or not [4] by vacuum tunneling, violates for large z, the unitar i ty bounds, 
and is hence manifestly unreliable. A breakdown of perturbat ion theory of course also occurs in other 
contexts, such as at high temperature,  high densities or large external fields. However, in all these cases 
it is obvious that  the properties of the perturbative vacuum are being modified drastically, so that  the 
theory is no more weakly-coupled. In high-energy two-particle collisions on the other hands our difficulty 
in calculating multiparticle product ion looks more like a technical nuisance, rather than a signal that  these 
processes are unsuppressed. This sounds intuitively obvious if one thinks of the time-reversed process: how 
could we send 50 W bosons in an interaction region, and expect only an energetic e+e - pair to emerge? 

There has been much learned debate on this issue, which I could not possibly review in this short talk. 
Here I will focus briefly on two closely-related problems where definitive answers are available: the problem 
of induced excitation in quantum mechanics, and the large-order behavior of typical Euclidean Green 
functions. Based on these I will then make a few comments on the prospects (i) of proving that  multiparticle 
product ion in a weakly-coupled theory is non-perturbativety small, and (ii) of actually calculating it 
to exponential accuracy in a semiclassical approximation. Given the intuitive evidence for exponential 

4~r 

suppression, and the ridiculously small low-energy tunneling probability in the electroweak model, e ~ ~ ,,~ 
10 -156, one may wonder whether calculating zero to exponential accuracy is really worth all this effort. I 
think the answer is yes for two reasons: first, the issue is sufficiently important  to deserve that  we close all 
loopholes in our intuitive arguments. Second, learning how to calculate such non-perturbat ive phenomena 
may turn  out to be academic in the electroweak model, but very interesting in other contexts. In this 
respect simpler models could be more valuable for their own sake, rather than as paradigms of mult i-W 
a n d - Z  production. 

L a r g e - O r d e r  B e h a v i o r .  We are all well-accustomed to the fact that  in field theory perturbative 
expansions are usually divergent. Indeed, a finite radius of convergence would be in contradiction with 
the vacuum instability that  typically develops for negative square coupling [5]. Consider for definiteness 
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a scalar field in d dimensions, whose action in appropriate mass units is 

s =  d% . '  

and let 
oo 

G(N)(g2[ Pl, ...,PN) • E g2nG(N)(pl,...,PN) (2) 
n ~ O  

be the expansion of a Euclidean N-point function. For n >> 1 we can compute the coefficients of the series 
semiclassically [6,7]. The idea is to relate them by a dispersion integral to the discontinuity of the function 
on the negative-g 2 axis, 

0 

1 / dg 2 
G~N)(pl'""PN) = 27ri g2,,+2 

- - 0 0  

- -  disc G(N)(g 2 ] Pl, ...,PN). (3) 

The integral is then evaluated at the saddle point ed(x)  - , ~ f ( x ) ,  which describes the decay of the 

vacuum for negative square coupling, with the result 

(27r)~- F n + ~ (-)"a -n -~  I I  f(PJ) " (4) 
j = l  

Here S(r  = _~  is the saddle-point action, and we have dropped a momentum-conserving d-function. 

Note that a weak-coupling expansion of the discontinuity is justified in the large-n limit, provided N and 
pj are all kept finite and fixed. 

The rapid factorial growth of the coefficients, typical of bosonic field theory, makes the series (2) 
diverge for any g. A closer look at Feynman diagrams in fact reveals that these large contrib~ations 

at high orders arise when n ~ o ( ~ )  vertices are concentrated in a real-space region of size ~ o(1) 1). 

From the functional-integral point of view these contributions probe the region of large fields, or of large 
virtual non-linear waves. It is because such waves are not described adequately, when one expands around 
the usual vacuum, that perturbation theory breaks down. Intuitively we of course expect that large 
fluctuations, though perhaps hard to calculate precisely, are nevertheless ezponentialIy suppressed and 
thus often negligible. This expectation is in practice confirmed by the enormous success of QED: keeping 
for instance three terms in the expansion of the anomalous magnetic moment of the electron, we find 
agreement with experiment to better than seven significant digits [9]. The more precise mathematical 
statement one would like to make is that the perturbative series is asymptotic to some rigorously defined 
function, and that  the semiclassical estimate, eq.(4), can be converted into a uniform bound for the series 
remainder 

n - - 1  

R e m n ( a ) - -  G(N)(g 2 ) -  E GIN) g2I < n! g2n an , (5) 
/ = 0  

where limn+o~(an) -Un = a is a finite constant, and g2 lies in some finite interval (0, ~2) on the positive 

real axis. From the above bound and from Stirling's formula, n! _~ x / ~ ( n +  1) n+�89 e - n ' ~ ,  we could conclude 

1) Fermionic theories fare in this respect better thanks to the Pauli exclusion principle. In closed, string 
theory, on the other hand, the divergence of perturbative expansions appears to be even more severe 
[s]. 
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that in the g --~ 0 limit 

min Rem~(G) _~ exp - , (6) 
n 

so that the divergent high-order contributions indeed sum up into a controllable non-perturbatively small 

ambiguity 2) 

Proving this statement has been one of the aims of formal (constructive)field theory [10]. For the 
Euclidean scalar theory, eq.(1), in the superrenormalizable (d < 4) domain, the stronger result of Borel 

summability [11] ensures in particular the existence of the above bound 3). Furthermore, the large-order 
semiclassical estimate can be shown to correctly predict the relevant singularity of the Borel transform 
[13], so that the bound is optimized for ~ = a. The extension of these results to (i) the Minkowski region in 
field theory, (ii) the double-well potential in quantum mechanics, or (iii) the d = 4 renormalizable theory 
is not straightforward. Controlling non-perturbative effects in the first case is hard because bounds do 
not continue analytically. Borel summability has nevertheless been established for the on-shell four-point 
function, but only below the particle-production threshold [14]. In the case of the double-well potential 
of quantum mechanics, obtained by flipping the sign of the quadratic term in (1), there is a hindrance to 
Borel summability due to the presence of real instantons. Indeed the semiclassical large-order analysis [15] 
predicts a singularity of the Borel transform at the same distances a = 4, from the origin as in the single- 
well case, but lying on the positive real axis. This singularity corresponds to the action of an infinitely- 
separated instanton-antiinstanton pair, and is expected to control the non-perturbative ambiguities of the 
asymptotic expansions in the trivial and one-instanton sectors [7], but rigorous bounds of the type (5) 
have not to my knowledge been established [16]. In the third case of the r model, Borel summability 
is obstracted by the so-called renormalons [17], which are a warning that non-perturbative ambiguities 
could a priori  be affected by renormalization. Since, however, the theory most probably does not exist, 
there is little point in worrying about bounds (5). Needless to say, finally, that non-perturbative effects 
in four-dimensional gauge theories are still beyond rigorous technical control [10], since in addition to 
renormalization and the presence of real instantons one must also face the problems of gauge fixing and 
scale invariance. 

There are three lessons to retain from this blitz review of large-order behaviour: first that naive 
perturbation theory around the vacuum breaks down when one tries to estimate the contribution of large 
fields, or of (real or virtual) non-linear waves; second that such contributions to few-particle processes are 
expected to stay exponentially small, and can be estimated to exponential accuracy semi-classically; and 
third that a real proof of exponential suppression requires a non-perturbative control of the vacuum and 
takes us into the rough territory of constructive field theory. These comments should be kept in mind 
when moving on to the problem of multi-particle production, which in a vague sense is the square root of 
the large-order problem: indeed, large-field fluctuations are in this case created from, but do not have to 
disappear back to a few-particle state. 

3. M u l t i - L e g  F u n c t i o n s  in Q u a n t u m  Mechan ics .  The quantum mechanical analog of multipar- 
ticle production is the induced excitation of an anharmonic oscillator under the action of a weak but very 
energetic external force [18-20]. We concentrate first on the single-well potential with action given by 
eq.(1). The aznplitude of interest is proportional to the matrix element (0]r where N - g~ >> 1 is the 

level of the excited final state and E = ~ is its energy. To motivate this scaling of parameters consider 

2) The simple statement of asymptoticity of the series says nothing about the size of this ambiguity, 
which could for instance have been as large as exp(-1/g~-~-~ ). 

3) Borel summability in fact allows a reconstruction of the function from its series with arbitrary 
precision, by using appropriate conformal mappings [12,7] . 
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the weak-coupling expansion of the energy, 

1 3g 2 , 2 E = (N + -~) + --~-(2N + 2N + 1) - (34N 3 q- 51N 2 -k 59N q- 21) q- . . .  (7a) 

which can be clearly reorganized as foltows: 

= 4 " ) +  d e l ( ' ) +  r  + . . . .  (7b) 

The effective expansion parameter  in (7b) is Planck's constant,  as would be made obvious if we were to 
3 2 restore all units in our equations. In particular,  the function e(z,) = y + gr,  + l~SZ, a + ... is the inverse of 

the integrated classical density of states, 

~(~) 

0 

X2 X 4 )  

2 4 (8) 

where r - x/g defines the rescaled position variable, and z(e) = V/x/1 + 4e - 1 is the rescaled ciassical 
turning point. This relation between energy and level illustrates that ,  for coherent states of many  quanta,  
it is the classical but not the naive weak-coupling approximation that  is adequate. 

Let us then consider an analogous semiclassical expansion of the matr ix-element  (N'IzMIN), when 

, ~' large 4) all quan tum numbers  N -= p-, N '  = 7~, and M - ~ are 

N'lxMlN} =exp( ~F(r,,z/,#) + F~(t,,~/,#) +...) (9) 

The form of this expansion is based on our expectat ion that  in some range of parameters  the overlap 
integral should be non-per turbat ively  suppressed. We are of course ul t imately interested in t h e  matr ix  
element (0lOIN}, since we want to mimic the effect of a few-particle initial state. We must  therefore hope 
that  this matr ix  element can be obtained, at least to exponential  accuracy, by taking the p, ~' --+ 0 limit, 

i.e. in formulae: 

lim g21og(0lr 
g--*O 

(t0) 

where 

F(~)  = lira F ( G z / , # )  (11) 
#,u' --,'0 

The simple uni tar i ty  relation 

o o  

(01r = X(o1r 
rn=0 

(12) 

1 implies in part icular  that  I(0[r 2 < (01r -~ ~ + o(g 2) , so that  the function F (u )  must  dear ly  stay 
non-positive. The first t e rm of a naive weak-coupling expansion violates this uni tar i ty  bound,  because 

4) Because of reflection symmet ry  N + N t + M must be even. 
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of the same factorial growth of graphs which is responsible for the large-order divergence. 

calculation in fact gives [21] 5) 

from which we find 

8 / 2xN/2 

v 
F(u)  = -~-(1 +log--u  + ~ 1 7 6  

A precise 

(13a) 

(13b) 

The Born approximation thus hits the unitarity bound at v = 16e, at which point it is manifestly unreliable. 
In reality, however, the matrix element stays exponentially small for all finite u. This can be established 
explicitly both (a) by a semiclassical calculation [22,18,23], and (b) by deriving rigorous upper bounds 
[20], as I will now briefly explain: 

a). The semiclassical calculation of the overlap integral f x M ~ N ,  ff2 N for N >> N ~ >> 1 was suggested 
a long time ago by Landau [22]. The idea is to deform the integration contour in the complex-x plane 
away from the classical turning points, use a WKB approximation for the wavefunctions ffI] N and ~ g ' ,  
and evaluate the resulting integral at its saddle point. The full details of a careful calculation have only 
recently been completed [23], and confirm Landau's result [18, 22] in the # ~ 0 limit 

( 1 4 )  F ( e , e ' ) = -  du dx _ - -  du ~ K 1+_ 

i ~4 _ u) (1 + 4u)~ 2~/I + 4u / 
+ v o, 

where K is the complete elliptic integral. The result is here given as a function of energies, but can be 
also expressed in terms of the levels u and u r via the classical relation (8). As was already anticipated, F 
has a smooth u' --~ 0 limit, which can be used to estimate (01r } to exponential accuracy. Furthermore 
F(u) is a monotone decreasing function of energy or level, so that the matrix element for finite u is indeed 

exponentially small. Notice also that by using the asymptotic expansion K(1 - 5) N Iog(v/~) + 0(5 log 5), 

one can recover the Born result, eq.(13b). 
b). The more rigorous proof of exponential suppression [20] makes use of an exact recursion relation 

T2 ( N,N') between matrix elements of powers of r Defining the recursion coefficients ( N ' I e M I N )  = '"M X 

(N'IeM+21N) one finds 6) 

92(M2 +1) 
= ( 1 5 )  

6( 4 )~M-21"2~M_4 + + -t- ( (E - - M S )  ' 

where (b) are the binomial coefficients, and E and E'  are the energies at the N and N'  levels. This is 
the analog of Schwinger-Dyson equations, which in field theory are instrumental for proving the uniform 

5) The calculation is identical to the Born approximation for the production of N scalar particles at 
threshold, up to a normalization 1 and an extra factor of v ~  per external leg appearing in the 

LSZ reduction of quantum mechanics [20]. 
6) This equation allows a fast numerical evaluation of the low-lying energy levels and wavefunctions 

with very high precision [24]. Notice also that in the semiclassical limit it reduces to 

#4 ~2 

+  2(e + + _ _ 2 - 0 

OF( e 1 log -- #). It can therefore be used to determine the #-dependence of the function where -~- r] 0~, ~ , e', 

F completely. 
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remainder bounds (5). The problem we are here facing is very similar: indeed, since the first N terms in 
the asymptotic power series for (0Ir } are zero, we have for all n < N 

Remn((OlOlN)) = (0[~IN) , 06 )  

so that bounding the series remainder up to this order would automatically put bounds on the matrix 
element itself. Skipping further details on the derivation of these bounds, let me simply point out that  
they finally take the form 

F(e) < min B(e , { ) ,  (1T) 
o_<~-_<~ 

where ~/g2 plays the role of the order of the expansion. This should be chosen appropriately so as to 
optimize the bound B, making sure in particular that the coupling-constant suppression is not overwhelmed 
by factorial growth. The optimal bound has been shown to decrease monotonically with energy [20], like 
the semiclassical estimate eq.(14). Proving that the two actually coincide would require some more work. 

"( ) The double-well potential, V(r = ~ 42 _ 2 2 , can be treated with similar techniques. Induced 

excitation, whether accompanied or not by quantum tunneling, can be again bounded by an exponential 
envelope whose decay with energy is monotonic [20]. The leading-order instanton calculation [19], on the 
other hand, predicts that induced tunneling grows fast with energy in the low-energy region. To be more 
precise, the transition amplitude from the ground state in one well to the N t h  excited state in the other 
is given to exponential accuracy, and in the limit of small v, by 

F(u)  = - ~ + ~  1 + l o g - -  +subleading. (i8) 

This rapid initial growth with energy is the result of two competing effects: the enhancement of sponta- 
neous tunneling, starting from some optimal jumping state, is partially compensated by the fast-falling 
probability of exciting this latter from the vacuum [25]. The presence of extra real turning points com- 
plicates in this case the WKB analysis, and the calculation of the full function f ( u )  has not, yet been 
completed [23]. The exponential envelope tells us, however, that it has to reach a maximum at some 
finite distance below the zero-axis, before dropping indefinitely in the u ~ ec limit. This means that 
induced tunneling has a resonance of ezponential proportions, which could, for instance, be observable in 
semiconductor physics [26]. 

4. C o m m e n t s  on  F ie ld  T heo ry .  I will conclude with a few telegraphic comments on the prospects 
of extending the results reviewed in the previous two sections to multi-particle production in field theory. 
We saw that the large-order behavior shows no qualitative difference as one passes from (d = 1) quan- 
tum mechanics, to (d = 2, 3) superrenormalizable Euclidean theories. It should therefore be possible to 
prove that, like induced excitation in the former, multiparticle production in the latter is exponentially 
suppressed. Repeated use of the Schwinger-Dyson equations could indeed lead to bounds for Euclidean 
multi-leg Green functions, but there is at present no obvious strategy on how to extend such bounds to 
the Minkowski region. Closely related are efforts to establish bounds by exploiting the relation between 
the forward elastic amplitude and the total inclusive cross-section [27] 

1 
a i.d(x/~) - Im.4d (v~) , (19) 

v/(S - 4 ) s  

This is the analog of the quantum-mechanical unitarity relation, eq.(12). Taking the remainder at order 
N, we can express the inclusive cross section for producing at least N particles in the following form: 

1 Im RemN (M~l )+  RemN @ , < N )  . (20) 

Rigorous bounds on the large-order behaviour of the right-hand side could thus be used to establish 
exponential suppression of the left-hand side. Though very plausible, this strategy stumb!es again on the 
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fact that little can be said rigorously about the large-order behaviour of perturbation theory deep in the 
Minkowskian region. 

In view of these difficulties, attempting to calculate the process semiclassically 7) " remains, I believe, 
the most promising prospect. This prospect has received a boost recently thanks to a clever suggestion by 
Rubakov and Tinyakov [29], who proposed to first calculate a quantity which appears to have a manifest 

V t 
semi-classical expansion. This quantity is the inclusive cross-section for an ensemble of N ~ = 7 incoming 
particles, distributed randomly in phase space, but with fixed total energy in the center-of-mass frame. 
Assuming we can calculate it, we may then hope to take the u r ~ 0 limit, so as to recover the leading 
exponential estimate for processes with only few particles in the initial state. This has been illustrated 
explicitly in our discussion of the single-well potential in quantum mechanics. There is, furthermore, 
some preliminary evidence for the smoothness of this limit in the one-instanton sector of the standard 
electroweak model [30]. Whether  a useful solution to this complicated saddle-point problem can, however, 
be found remains to be seen. 

I have benefited from discussions with K. Gawedzki, G. Grunberg, J. Lascoux, A. Mueller, E. Mottola, 
P. Tinyakov, E. Papantonopoulos, and R. S~n@or. I am particularly indebted to V. Rivasseau and J. 
Magnen for many patient explanations of constructive field theory methods. 
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