TEAEZTEZ ZTON H? (©.23a-711)
AZKHZEIZ IT

MepLkeg evALOPEPOVOES/ MPULES/TTPMTOTUIIEG AVOELG KOLL OYOLLOL TTOV TTPOTAONKAY 0TIV TOEN:

Aoknon 1. YrevOuwlovue T yoouuxn emt LOOUETQLA f— f H? - H2.
Av f,g € H? etvau tetoeg wote fg € H?, Seifte ont fg = fg

ArddeiEn. Agov f e H?, av f(e) := f(re'), eyovpe lim, 1 | fr — flz2 = 0 kou ovvermwg yio kade
aKorovOiat (1) e 0 < 7y, /' 1vmapye virakohovOwa (ry, ) ™G () dote limy, fr, (e) = f(e™) oyedov
yiokade e € T, dnhadn yio kabe e ¢ A ooy AcT SXSL uetpo Lebesgue 0. ['ta Tov 1dL0 Aoyo, vapyel
vrakorovlua (r},) tne (ri,) wote limy, g/ (") = g(e™) yia kabe e ¢ B omov B = T exer petpo 0.

Eqooov emong fg € H?, vapyer vraxorovbux () g (r),) 0ote lim,(fg). (e) = (f9)(e*) yia
xa0e e’ ¢ C omov C < T eyet petpo 0.

Av ovopaocovpue X = A u B U C, 1o cuvoho X exel petpo 0 ko yro. kabe el ¢ X exovpe howtov
lim fyy (¢") = f(e™)
lim g, (¢") = g(e")

tim( g}y () = (Fo) (¢

4.

Cb

Opwg Ao Tig TPWTEG dVO OXEOELG eXOVNE limy, (fg)r (€) = f(et)g(e'), omote ovvdvaLovtag e Ty
tpuT Pprokovpe ot (fg)(e) = f(e™)g(e™) yia kade et ¢ X, dSnhadn, oxedov mavtov.
AelEape AoLov oTL f(} = fﬁ (G OTOLYELOL TOV H?. ]

Mopatypnon H otouyeiwdng ovtn amodelEn amopevyel ) xpnon tov Oempnuatog Fatou, mov dev
gyovue 0TodeIEEL.

Aoknon 2. Eotw ¢ € LP(T) xon My, € B(L?(T)) 0 avtiotoy0g ToMaTAOOLAOTIKOG TELEOTNG.
AelEte oti 0 voywpog H? < L? eivar M y-0valholwTog oV KoL LOVOV OV ¢ € H?,
av KoL Lovov av vopyeL ¢ € H® waote ¢ = ¢.

(IlapaiermeTal)

Aoknon 3. Ael&te ot av Lo f e H? TTOLPVEL TTPOYUOTLKEG TLUES OY€QOV TTavToU 0T0 T, TOTE ELVaL OYedOV
TOVTOV LON UE TNV ¢ fp, 0OV ¢ (a (TPOyUoTLKT) otadepa.

AmédeiEn. We have learnt in [605] that if a function g in L?(T) is a.e. real valued, then §(—n) = §(n).
Indeed,

2rg(—n) = Jg(eit)ei”tdt = fg(e”)Wdt = <Jg(eit)e—mtdt> = 271g(n).

But our function g = f is in H2, so necessarily g(—n) =0 when n = 1. By the previous calculation we must
have §(n) = 0 when n # 0 and so the Fourier series reduces to f = g = §(0) fo. O

Aocknon 4. AELEIS OTL OV EVOG K)LELGIO(; vroywpog E < L2(T) ewar M1-avalholwTog, ToTte
N M (E) = Enadwg [ M (E) = {0}.

neN

Anddeién. By assumption M (E) < E.If M(E) # E then E is simply invariant (not reducing) 'so by
Beurling there exists ¢ € L?*(T) with |¢| = 1 a.e. on T such that E = ¢H? = M,(H?). Observe that

lif it were reducing it would also be invariant under M;* = M; ' andso E € M:(E) € E.



My My = My M. Hence, for n > 1,
M{(E) = M{'My(H?) = MyM7' (H?) .
But H? = span{fo, fi,...} and so (since M7} is isometric) Mln(fIQ) = span{ fn, fn+t1,--- }. Eteton ot

() M(E) = [ MpM7'(H?) = My, (| M(H?) (Mg is 1-1)
n=0 n=0 n=0

:M¢> ﬂSPW{fman’---}-

n=0

But clearly (- Span{ fn, fut1,. ..} = {0} (every fj for k > 0 is orthogonal to it). Thus

() M7(E) = {0}

n=0

N
Aoknon 5. AelEte ot eva mohvwvupo f(z) = D) agz

k=0
y0pov H?) av KaL HOVoV oV Sev exel Kappo prgo 0to . MtopeLte vor YEVIKEVOETE I TV TEPUTTOON

mov N f ewvan ohopopen o (o steptoym tov D;

k ervar EEwTeptkn ouvapton (wg OTOLXELO TOV

AmédelEn. Oa ypelaodel Lo EVOLOPEPOVOQ TTALPATNPNON):
Aqupa 1. If f, g are in H® and are outer, then f g is outer.

AmddelEn. Note that f outer means that f is a cyclic vector for 77, i.e. that span{77*(f) : n > 0} is dense in
H?. But
span{T7'(f) : n = 0} = span{¢" f : n = 0} = span{T(¢") : n > 0}

and since f € H®, the operator Ty : H 2 H? : h — fhis bounded, hence the above is equivalent to
showing that the closure of Ty(H?) is H?.

Since fg € H™, it thus suffices to show that the closure of Ty, (H?) is H>.

Of course fgH? < H?, hence fgH? < H?.

To show equality, it is enough to show that gH? < fgH? (because then gH? < fgH? and since g is bounded
and outer, as remarked above we have gH2 = H?).

So let h € H?. We show that gh is in fgH?: Since H?> = fH?, there is a sequence (p,,) in H? with | fp, —
h| — 0 and hence ||gfp, — gh| < |g|., | fpn — k| tends to O as well. But each g fp,, is in fgH? and so the
limit gh is in fgH?2. O

Iporaon 2 (H yevikevon). If f is holomorphic in an open disc V containing D and has no roots in D, then it
is outer.

AmédeEn. The function f may have roots in T, but they must be finitely many, otherwise they would have an
accumulation point in T € V/, hence f would vanish identically by the identity principle.

Thus we may factorize
f)=(z—c1)...(z—cp)h(z), zeV

where the ¢; are the roots of f in T and / is holomorphic and has no roots in D. Since D) is compact, inf{|h(2)] :
z € D} > 0. Thus 1/h is defined and bounded on D, which means that the operator T}, is invertible on H?
(with inverse 7' ;,) and so T,(H?) = H?.

It thus remains to show that z — (z — ¢1) ... (2 — ¢,) is an outer function. By Claim 1, this will follow if we
prove that u(z) := z — c is an outer function when ¢ € T.



For this, let g € H? be orthogonal to T7*(u) for all n € Z, . Thus we have, for alln € Z,

0={g,T1"(u)y =g, "¢ — )y = (g, ") — &g, (™)
hence  [(g, ("] = |el|<g, ¢ = [Kg,¢™)] -

This means that the (Fourier) coefficients (g, (") of g are constant in modulus. But g is in H?2, so the sequence
({g,¢™)) must be square summable. This can only happen if all (g, (") vanish, i.e. if g = 0.

Thus the linear span of {T7*(u) : n > 0} has trivial orthogonal compelement, so it must be dense in H?, omog
Behoyte. O

Aoknon 6. Zto pabnua ypnopomomdnke ott, av eva aplunowo ovvoho {c, : n € N} ewvan mukvo
otov Kukho T kau Oewpnoouvpe ta onuela z, = cp(1 — n—lz), tote Kabe onuelo tov Kukiov T elvon onueLo
OVOOMPEVONG TOV {2, : n € N}. AmodelEn;

Iapallayn: Eotw X vmoouvolo tov Kukhou (kKhewoto, av Belete), kou {¢, : n € N} mukvo oto kukho X.
Ewvan alnBeia 0t Kabe onueto oV X gLvol oMUEL0 CUOOWPEVONG TOV {cn(lA— n%) :n € N}; QXL mavto!
opte yio mapdderypo X = {€™/™ n e N} U {1} kau yio ¢, to onueta e™/™. To onueto €™ = 1 ewva
OPKETA LOKPLOL OTT OMCL TOL 2y, - YLOLTL ELVOIL LELOVIUEVO ONUELO Tou X

Evw o xvkhog dev gyeL uepovopeva onueta!

Meta am autnv TV TOPATNPN 0T, 1] AUOT] ELVOL OUEOT:

If z € T and € > 0 the disk D(z, €/2) contains infinitely many terms of {c,, : n € N}. So there exists a n. as
large as 1 like, and I choose n. > +/2 /€ (exw to dtkauwua!) so that ¢, € D(z,€/2) for all n = n.. But then

€

1
2+ﬁ<6'

|z — zn| < |2 —cn| +en — 20| <
O

Aoknon 7 (ITpoarpetika). Mia cuvaptnon b : D — C heyetaw moAdamxAaciactng (multiplier) Tov ympov
H? av weavomotel hf € H? yia xae f € H?. AelEte oTL T0. 0k0hov00 ELVOL LGOOUVOLDL:

(o) H h etvou oA aumAaotaotg Tov ywpov H2.

(B) H ametcovion f — hf opilel poayusvo teheow H? — H?.

(y)he H®.

AmédeEn. The implications (y)=>(p)=>(c) are immediate.
We show that ()=(y):

First, since 1 € H?, we have h = h1 € H? by hypothesis. To show that A is in fact bounded, recall that for
each z € D,

h(z) = (hy k2)

where k. (w) = is the Szegd kernel . Thus for all f € H? we have

— W

(i Tikzy = (Thf ko) = Chf ko) = (hf)(2) = h(2) f(2)
= h(z)(f, kz) = (f h(2)k2)

and therefore

Tik, = h(z)k.

which shows that the complex number /(z) is an eigenvalue of the operator 7}. It follows that

[1(2)] = [h(2)] < | T3] = [Tnl

forall z € D, and so |h|q = sup{|h(z)| : z € D} < |T}], omwg Oehape.



Now we show that (a)=(f):

First proof. The hypothesis means that we have a well defined map
Ty:f— hf:H?> > H?
which is obviously linear. Since its domain and range are complete, to show that this mapping is bounded it

suffices to prove that its graph {(f, hf) : f € H?} is closed in H? x H? in the product topology

For this, by linearity of T}, it is enough to prove that if a sequence ( f,,) in H? satisfies | f,| — 0
and |hf, — g| — 0 for some g € H?, then necessarily g = 0 (¢Enyelote yiom).

Now for each z € D, we have
9(z) =g, k) =lim{hfp, k,) = lim(hf,)(z) = h(z)lim f,(2) = h(z) im{(f,,k.) =0
This shows that g = 0 as claimed.

Second proof . We work in L?(T): note that the hypothesis gives that for all fe H? we have hf fe H2,
ie hfe H? (Exercise 1). We show that this implies that £ is in L*(T). It will follow (Exercise 2) that h is
bounded in D, i.e. that h € H®.

Write g = h for brevity. Suppose that g is not essentially bounded. We will prove that there is a v € H? for
which gv is not in L?(T).

(a) For this, we will first prove that there is a u € L?(T) for which gu is not in L?(T).

Decompose R | as a disjoint union | J,,»4[n, 7 + 1) of intervals and define

Ap=1{e"eT:n<l|gle®) <n+1} =g ([n,n+1)).
These are disjoint measurable subsets of T and their union is {¢?* € T : |g(e®)| < oo} whose complement
{e € T : |g(e™)| = oo} has measure zero, since |g| € L%(T).

Since Igl is not essentially bounded, for all n the set {e* € T : |g(e)| > n}, which equals | -, Ay, must
have positive measure; therefore for all n there exists k,, > n so that Ay, has positive measure.

Now for each n € N let x,, be the characteristic (aka indicator) function of Ay . Note that x, € L? and
Ixnl3 = m(Ag,) > 0. The sum
0]
Z i Xn
kn
n=0

HXTLHQ

defines a function u € L? because? (it is measurable and)

" _ o L m(Ag,)
i3 - | (;Ok,%\xnu ) Zf <k2\xnn2 ") 2 ma) <*

(Beppo Levi). On the other hand

0

lgul? = 3, s loxal® = Z p o \g\an

n=0 nH 71”2 n=0 nTm

hence

lgul = [ guPdm ™ Z i |l dm

1
2 2
E dm > E m(Ag, )k,
k2 Akn J 9 = kam(Ag,) (Ar.)

Zalternatively: the terms are pairwise orthogonal and square summable elements of the Hilbert space L>




(because for ' € Ay, we have |g(e®)| = ky).

Hence ||gu||3 = oo: the function gu is not in L?(T).

(b) Now we modify u to obtain a function in H2. If

U= Z a(n)fn = Z a(n) fn + Z a(—k)f-x
nez n=0 k=1

These both converge in | - |2 and hence define elements of H2. Note that

u=v+w

hence gu = gv + gw. If both gv and gw were in L2, we would have (since (|gv| + [g@|)? < 2(|gv|? + |gw|?)

and |gw| = |g].]w| = |g].|w| = [gw])

lgul3 = J(|gv[ + |gw|)2dm < 2f \gv|?dm + 2f |gw|*dm = 2J|gv\2dm + 2J|gw2dm <

contrary to the choice of u.

Conclusion: there are v, w € H? such that either gv or gw is not in H?2.

Moapatypnon 3. To evliageoov tng SevTepns amodeléng eLvar 0Tl e1val «<KATAOKEVAGTIKY» KOl OTOL-

XELWONG, Ko OV 0TNOLLETOL 0TO BEWONUA KAELOTOU YQAPHUATOG.



