ΤΕΛΕΣΤΕΣ ΣΤΟΝ H^2 (Θ.23α-711)

ΑΣΚΗΣΕΙΣ ΙΙ

Μερικες ενδιαφερουσες/ωραιες/πρωτοτυπες λυσεις και σχολια που προταθηκαν στην ταξη:

Άσκηση 1. Υπενθυμιζουμε τη γραμμικη επι ισομετρια $f\mapsto \widetilde{f}:H^2\to \widetilde{H}^2$. Αν $f,g\in H^2$ ειναι τετοιες ωστε $fg\in H^2$, δειξτε οτι $\widetilde{fg}=\widetilde{f}\widetilde{g}$.

Απόδειξη. Αφου $f \in H^2$, αν $f_r(e^{it}) := f(re^{it})$, εχουμε $\lim_{r \nearrow 1} \|f_r - \tilde{f}\|_{L^2} = 0$ και συνέπως για καθε ακολουθια (r_n) με $0 \le r_n \nearrow 1$ υπαρχει υπακολουθια (r_k) της (r_n) ώστε $\lim_n f_{r_{k_n}}(e^{it}) = \tilde{f}(e^{it})$ σχέδον για καθε $e^{it} \in \mathbb{T}$, δηλαδη για καθε $e^{it} \notin A$ οπου $A \subseteq \mathbb{T}$ έχει μέτρο Lebesgue 0. Για τον ιδιο λογο, υπαρχει υπακολουθια (r'_n) της (r_k) ωστε $\lim_n g_{r'_n}(e^{it}) = \tilde{g}(e^{it})$ για καθε $e^{it} \notin B$ οπου $B \subseteq \mathbb{T}$ έχει μέτρο 0. Εφοσον έπισης $fg \in H^2$, υπαρχει υπακολουθια (r''_n) της (r'_n) ωστε $\lim_n (fg)_{r''_n}(e^{it}) = (fg)(e^{it})$ για καθε $e^{it} \notin C$ οπου $C \subseteq \mathbb{T}$ έχει μέτρο 0.

Αν ονομασουμε $X=A\cup B\cup C$, το συνολο X εχει μετρο 0 και για καθε $e^{it}\notin X$ εχουμε λοιπον

$$\begin{split} \lim_n f_{r_n''}(e^{it}) &= \widetilde{f}(e^{it}) \\ \lim_n g_{r_n''}(e^{it}) &= \widetilde{g}(e^{it}) \\ \lim_n (fg)_{r_n''}(e^{it}) &= \widetilde{(fg)}(e^{it}) \,. \end{split}$$

Ομως απο τις πρωτες δυο σχεσεις εχουμε $\lim_n (fg)_{r_n''}(e^{it}) = \tilde{f}(e^{it})\tilde{g}(e^{it})$, οποτε συνδυαζοντας με την τριτη βρισκουμε οτι $\widetilde{(fg)}(e^{it}) = \tilde{f}(e^{it})\tilde{g}(e^{it})$ για καθε $e^{it} \notin X$, δηλαδη, σχεδον παντου.

Δειξαμε λοιπον οτι $\widetilde{fg} = \widetilde{fg}$ ως στοιχεια του \widetilde{H}^2 .

Παρατηρηση Η στοιχειωδης αυτη αποδειξη αποφευγει τη χρηση του Θεωρηματος Fatou, που δεν εχουμε αποδειξει.

Ασκηση 2. Εστω $\phi \in L^\infty(\mathbb{T})$ και $M_\phi \in \mathcal{B}(L^2(\mathbb{T}))$ ο αντιστοιχος πολλαπλασιαστικος τελεστης. Δειξτε οτι ο υποχωρος $\widetilde{H}^2 \subseteq L^2$ είναι M_ϕ -αναλλοιωτος αν και μονον αν $\phi \in \widetilde{H}^2$, αν και μονον αν υπαρχει $\psi \in H^\infty$ ωστε $\widetilde{\psi} = \phi$.

(Παραλειπεται)

Askhoh 3. Deixte oti an mia $\widetilde{f} \in \widetilde{H}^2$ pairnei pragmatikes times scedon pantou sto \mathbb{T} , tote einai scedon pantou ish me thy cf_0 , opou c mia (pragmatikh) stabera.

Aπόδειξη. We have learnt in [605] that if a function g in $L^2(\mathbb{T})$ is a.e. real valued, then $\hat{g}(-n) = \overline{\hat{g}(n)}$. Indeed,

$$2\pi \hat{g}(-n) = \int g(e^{it})e^{int}dt = \int g(e^{it})\overline{e^{-int}}dt = \overline{\left(\int g(e^{it})e^{-int}dt\right)} = 2\pi \overline{\hat{g}(n)}.$$

But our function $g = \widetilde{f}$ is in \widetilde{H}^2 , so necessarily $\widehat{g}(-n) = 0$ when $n \ge 1$. By the previous calculation we must have $\widehat{g}(n) = 0$ when $n \ne 0$ and so the Fourier series reduces to $\widetilde{f} = g = \widehat{g}(0)f_0$.

Askhoh 4. Deixte oti an enac kleistoc upocmoc $E\subseteq L^2(\mathbb{T})$ einai M_1 -analloimtoc, tote $\inf M_1(E)=E \inf \text{allies} M_1^n(E)=\{0\}.$

 $A\pi \delta \delta \epsilon \iota \xi \eta$. By assumption $M_1(E) \subseteq E$. If $M_1(E) \neq E$ then E is simply invariant (not reducing) 1 so by Beurling there exists $\phi \in L^2(\mathbb{T})$ with $|\phi| = 1$ a.e. on \mathbb{T} such that $E = \phi \widetilde{H}^2 = M_{\phi}(\widetilde{H}^2)$. Observe that

¹if it were reducing it would also be invariant under $M_1^* = M_1^{-1}$ and so $E \subseteq M_1(E) \subseteq E$.

 $M_{\phi}M_1 = M_1M_{\phi}$. Hence, for $n \ge 1$,

$$M_1^n(E) = M_1^n M_{\phi}(\tilde{H}^2) = M_{\phi} M_1^n(\tilde{H}^2).$$

But $\widetilde{H}^2 = \overline{\operatorname{span}}\{f_0, f_1, \dots\}$ and so (since M_1^n is isometric) $M_1^n(\widetilde{H}^2) = \overline{\operatorname{span}}\{f_n, f_{n+1}, \dots\}$. Επεται στι

$$\bigcap_{n\geqslant 0} M_1^n(E) = \bigcap_{n\geqslant 0} M_\phi M_1^n(\widetilde{H}^2) = M_\phi \bigcap_{n\geqslant 0} M_1^n(\widetilde{H}^2) \quad (M_\phi \text{ is 1--1})$$

$$= M_\phi \bigcap_{n\geqslant 0} \overline{\operatorname{span}} \{ f_n, f_{n+1}, \dots \}.$$

But clearly $\bigcap_{n\geq 0} \overline{\operatorname{span}}\{f_n, f_{n+1}, \dots\} = \{0\}$ (every f_k for $k\geq 0$ is orthogonal to it). Thus

$$\bigcap_{n\geqslant 0} M_1^n(E) = \{0\}.$$

Άσκηση 5. Δειξτε οτι ενα πολυωνυμο $f(z)=\sum\limits_{k=0}^N a_k z^k$ ειναι εξωτερική συναρτήση (ως στοιχείο του χωρου H^2) αν και μονόν αν δεν έχει καμμία ρίζα στο $\mathbb D$. Μπορείτε να γενικευσετε για την περιπτώση που η f είναι ολομορφή σε μια περιοχή του $\overline{\mathbb D}$;

Απόδειξη. Θα χρειασθει μια ενδιαφερουσα παρατηρηση:

Λήμμα 1. If f, g are in H^{∞} and are outer, then fg is outer.

Aπόδειξη. Note that f outer means that f is a cyclic vector for T_1 , i.e. that span $\{T_1^n(f): n \ge 0\}$ is dense in H^2 . But

$$\operatorname{span}\{T_1^n(f):n\geqslant 0\}=\operatorname{span}\{\zeta^nf:n\geqslant 0\}=\operatorname{span}\{T_f(\zeta^n):n\geqslant 0\}$$

and since $f \in H^{\infty}$, the operator $T_f: H^2 \to H^2: h \to fh$ is bounded, hence the above is equivalent to showing that the closure of $T_f(H^2)$ is H^2 .

Since $fg \in H^{\infty}$, it thus suffices to show that the closure of $T_{fg}(H^2)$ is H^2 .

Of course $fgH^2 \subseteq H^2$, hence $\overline{fgH^2} \subseteq H^2$.

To show equality, it is enough to show that $gH^2 \subseteq \overline{fgH^2}$ (because then $\overline{gH^2} \subseteq \overline{fgH^2}$ and since g is bounded and outer, as remarked above we have $\overline{gH^2} = H^2$).

So let $h \in H^2$. We show that gh is in $\overline{fgH^2}$: Since $H^2 = \overline{fH^2}$, there is a sequence (p_n) in H^2 with $||fp_n - h|| \to 0$ and hence $||gfp_n - gh|| \le ||g||_{\infty} ||fp_n - h||$ tends to 0 as well. But each gfp_n is in fgH^2 and so the limit gh is in $\overline{fgH^2}$.

Πρόταση 2 (Η γενικευση). *If* f *is holomorphic in an open disc* V *containing* $\overline{\mathbb{D}}$ *and has no roots in* \mathbb{D} , *then it is outer.*

 $A\pi\delta\delta\epsilon\iota\xi\eta$. The function f may have roots in \mathbb{T} , but they must be finitely many, otherwise they would have an accumulation point in $\mathbb{T}\subseteq V$, hence f would vanish identically by the identity principle.

Thus we may factorize

$$f(z) = (z - c_1) \dots (z - c_n)h(z), \quad z \in V$$

where the c_i are the roots of f in \mathbb{T} and h is holomorphic and has no roots in $\overline{\mathbb{D}}$. Since $\overline{\mathbb{D}}$ is compact, inf $\{|h(z)|: z \in \overline{\mathbb{D}}\} > 0$. Thus 1/h is defined and bounded on $\overline{\mathbb{D}}$, which means that the operator T_h is *invertible* on H^2 (with inverse $T_{1/h}$) and so $T_h(H^2) = H^2$.

It thus remains to show that $z \mapsto (z - c_1) \dots (z - c_n)$ is an outer function. By Claim 1, this will follow if we prove that u(z) := z - c is an outer function when $c \in \mathbb{T}$.

For this, let $g \in H^2$ be orthogonal to $T_1^n(u)$ for all $n \in \mathbb{Z}_+$. Thus we have, for all $n \in \mathbb{Z}_+$,

$$\begin{split} 0 = \left\langle g, T_1^n(u) \right\rangle = \left\langle g, \zeta^n(\zeta - c) \right\rangle = \left\langle g, \zeta^{n+1} \right\rangle - \bar{c} \langle g, \zeta^n \rangle \\ \text{hence} \quad \left| \left\langle g, \zeta^{n+1} \right\rangle \right| = \left| \bar{c} \right| \left| \left\langle g, \zeta^n \right\rangle \right| = \left| \left\langle g, \zeta^n \right\rangle \right|. \end{split}$$

This means that the (Fourier) coefficients $\langle g, \zeta^n \rangle$ of g are constant in modulus. But g is in H^2 , so the sequence $(\langle g, \zeta^n \rangle)$ must be square summable. This can only happen if all $\langle g, \zeta^n \rangle$ vanish, i.e. if g = 0.

Thus the linear span of $\{T_1^n(u): n \ge 0\}$ has trivial orthogonal compelement, so it must be dense in H^2 , οπως θελαμε.

Ασκηση 6. Στο μαθημα χρησιμοποιηθηκε οτι, αν ενα αριθμησιμο συνολο $\{c_n:n\in\mathbb{N}\}$ ειναι πυκνο στον κυκλο \mathbb{T} και θεωρησουμε τα σημεια $z_n=c_n(1-\frac{1}{n^2})$, τοτε καθε σημειο του κυκλου \mathbb{T} ειναι σημειο συσσωρευσης του $\{z_n:n\in\mathbb{N}\}$. Αποδείξη;

Παραλλαγη: Εστω X υποσυνολο του κυκλου (κλειστο, αν θελετε), και $\{c_n:n\in\mathbb{N}\}$ πυκνο στο κυκλο X. Ειναι αληθεια ότι καθε σημειο του X ειναι σημειο συσσωρευσης του $\{c_n(1-\frac{1}{n^2}):n\in\mathbb{N}\}$; Οχι παντα! Παρτε για παράδειγμα $X=\{e^{\pi i/n},n\in\mathbb{N}\}\cup\{1\}$ και για c_n τα σημεια $e^{\pi i/n}$. Το σημειο $e^{\pi i}=1$ ειναι αρκετα μακρια απ ολα τα z_n - γιατι ειναι μεμονωμενο σημειο του X.

Ενω ο κυκλος δεν εχει μεμονωμενα σημεια!

Μετα απ αυτην την παρατηρηση, η λυση ειναι αμεση:

If $z \in \mathbb{T}$ and $\epsilon > 0$ the disk $D(z, \epsilon/2)$ contains infinitely many terms of $\{c_n : n \in \mathbb{N}\}$. So there exists a n_{ϵ} as large as I like, and I choose $n_{\epsilon} > \sqrt{2/\epsilon}$ ($\epsilon \chi \omega \tau o \delta \iota \kappa \alpha \omega \mu \alpha!$) so that $c_n \in D(z, \epsilon/2)$ for all $n \ge n_{\epsilon}$. But then

$$|z - z_n| \le |z - c_n| + |c_n - z_n| < \frac{\epsilon}{2} + \frac{1}{n^2} < \epsilon.$$

Άσκηση 7 (Προαιρετικα). Μια συναρτηση $h: \mathbb{D} \to \mathbb{C}$ λεγεται πολλαπλασιαστης (multiplier) του χωρου H^2 αν ικανοποιει $hf \in H^2$ για καθε $f \in H^2$. Δείξτε οτι τα ακολουθα είναι ισοδυναμα:

- (a) H h ειναι πολλαπλασιαστης του χωρου H^2 .
- (β) Η απεικονιση $f \mapsto hf$ οριζει φραγμενο τελεστη $H^2 \to H^2$.
- $(\gamma) h \in H^{\infty}$.

Aπόδειξη. The implications (γ)⇒(β)⇒(α) are immediate.

We show that $(\beta) \Rightarrow (\gamma)$:

First, since $\mathbf{1} \in H^2$, we have $h = h\mathbf{1} \in H^2$ by hypothesis. To show that h is in fact bounded, recall that for each $z \in \mathbb{D}$,

$$h(z) = \langle h, k_z \rangle$$

where $k_z(w)=\frac{1}{1-\bar{z}w}$ is the Szegő kernel . Thus for all $f\in H^2$ we have

$$\langle f, T_h^* k_z \rangle = \langle T_h f, k_z \rangle = \langle hf, k_z \rangle = (hf)(z) = h(z)f(z)$$
$$= h(z)\langle f, k_z \rangle = \langle f, \overline{h(z)}k_z \rangle$$

and therefore

$$T_h^* k_z = \overline{h(z)} k_z$$

which shows that the complex number $\overline{h(z)}$ is an eigenvalue of the operator T_h^* . It follows that

$$|h(z)| = |\overline{h(z)}| \le ||T_h^*|| = ||T_h||$$

for all $z \in \mathbb{D}$, and so $||h||_{\infty} = \sup\{|h(z)| : z \in \mathbb{D}\} \leqslant ||T_h||$, όπως θελαμε.

Now we show that $(\alpha) \Rightarrow (\beta)$:

First proof. The hypothesis means that we have a well defined map

$$T_h: f \mapsto hf: H^2 \to H^2$$

which is obviously linear. Since its domain and range are complete, to show that this mapping is bounded it suffices to prove that its graph $\{(f, hf) : f \in H^2\}$ is closed in $H^2 \times H^2$ in the product topology

For this, by linearity of T_h , it is enough to prove that if a sequence (f_n) in H^2 satisfies $||f_n|| \to 0$ and $||hf_n - g|| \to 0$ for some $g \in H^2$, then necessarily g = 0 (exhyreiste giati).

Now for each $z \in \mathbb{D}$, we have

$$g(z) = \langle g, k_z \rangle = \lim_n \langle hf_n, k_z \rangle = \lim_n \langle hf_n \rangle = h(z) \lim_n f_n(z) = h(z) \lim_n \langle f_n, k_z \rangle = 0$$

This shows that q = 0 as claimed.

Second proof. We work in $L^2(\mathbb{T})$: note that the hypothesis gives that for all $\tilde{f} \in \widetilde{H}^2$ we have $\widetilde{hf} \in \widetilde{H}^2$, i.e. $\tilde{h}\tilde{f} \in \widetilde{H}^2$ (Exercise 1). We show that this implies that \tilde{h} is in $L^\infty(\mathbb{T})$. It will follow (Exercise 2) that h is bounded in \mathbb{D} , i.e. that $h \in H^\infty$.

Write $g = \tilde{h}$ for brevity. Suppose that g is not essentially bounded. We will prove that there is a $v \in \widetilde{H}^2$ for which gv is not in $L^2(\mathbb{T})$.

(a) For this, we will first prove that there is a $u \in L^2(\mathbb{T})$ for which gu is not in $L^2(\mathbb{T})$.

Decompose \mathbb{R}_+ as a disjoint union $\bigcup_{n\geqslant 0}[n,n+1)$ of intervals and define

$$A_n := \{e^{it} \in \mathbb{T} : n \le |g(e^{it})| < n+1\} = |g|^{-1}([n, n+1)).$$

These are disjoint measurable subsets of \mathbb{T} and their union is $\{e^{it} \in \mathbb{T} : |g(e^{it})| < \infty\}$ whose complement $\{e^{it} \in \mathbb{T} : |g(e^{it})| = \infty\}$ has measure zero, since $|g| \in L^2(\mathbb{T})$.

Since |g| is not essentially bounded, for all n the set $\{e^{it} \in \mathbb{T} : |g(e^{it})| \ge n\}$, which equals $\bigcup_{k \ge n} A_k$, must have positive measure; therefore for all n there exists $k_n \ge n$ so that A_{k_n} has positive measure.

Now for each $n \in \mathbb{N}$ let χ_n be the characteristic (aka indicator) function of A_{k_n} . Note that $\chi_n \in L^2$ and $\|\chi_n\|_2^2 = m(A_{k_n}) > 0$. The sum

$$\sum_{n=0}^{\infty} \frac{1}{k_n} \frac{\chi_n}{\|\chi_n\|_2}$$

defines a function $u \in L^2$ because² (it is measurable and)

$$\|u\|_{2}^{2} = \int \left(\sum_{n=0}^{\infty} \frac{1}{k_{n}^{2}} \frac{\chi_{n}^{2}}{\|\chi_{n}\|_{2}^{2}} dm\right) = \sum_{n=0}^{\infty} \int \left(\frac{1}{k_{n}^{2}} \frac{\chi_{n}^{2}}{\|\chi_{n}\|_{2}^{2}} dm\right) = \sum_{n=0}^{\infty} \frac{1}{k_{n}^{2}} \frac{m(A_{k_{n}})}{m(A_{k_{n}})} < \infty$$

(Beppo Levi). On the other hand

$$|gu|^2 = \sum_{n=0}^{\infty} \frac{1}{k_n^2 ||\chi_n||_2^2} |g\chi_n|^2 = \sum_{n=0}^{\infty} \frac{1}{k_n^2 m(A_{k_n})} |g|^2 \chi_n$$

hence

$$||gu||_{2}^{2} = \int |gu|^{2} dm \stackrel{B.L.}{=} \sum_{n=0}^{\infty} \frac{1}{k_{n}^{2} m(A_{k_{n}})} \int |g|^{2} \chi_{n} dm$$

$$= \sum_{n=0}^{\infty} \frac{1}{k_{n}^{2} m(A_{k_{n}})} \int_{A_{k_{n}}} |g|^{2} dm \geqslant \sum_{n=0}^{\infty} \frac{1}{k_{n}^{2} m(A_{k_{n}})} m(A_{k_{n}}) k_{n}^{2}$$

 $^{^2}$ alternatively: the terms are pairwise orthogonal and square summable elements of the Hilbert space L^2

(because for $e^{it} \in A_{k_n}$ we have $|g(e^{it})| \ge k_n$).

Hence $||gu||_2^2 = \infty$: the function gu is not in $L^2(\mathbb{T})$.

(b) Now we modify u to obtain a function in \widetilde{H}^2 . If

$$u = \sum_{n \in \mathbb{Z}} \hat{u}(n) f_n = \sum_{n=0}^{\infty} \hat{u}(n) f_n + \sum_{k=1}^{\infty} \hat{u}(-k) f_{-k}$$

is the Fourier series of u (all three series converge in $\|\cdot\|_2$) define

$$v := \sum_{n=0}^{\infty} \hat{u}(n) f_n, \quad w := \sum_{k=1}^{\infty} \overline{\hat{u}(-k)} f_k.$$

These both converge in $\|\cdot\|_2$ and hence define elements of \widetilde{H}^2 . Note that

$$u = v + \bar{w}$$

hence $gu=gv+g\bar{w}$. If both gv and gw were in L^2 , we would have (since $(|gv|+|g\bar{w}|)^2 \le 2(|gv|^2+|g\bar{w}|^2)$ and $|g\bar{w}|=|g|.|\bar{w}|=|g|.|w|=|gw|$)

$$||gu||_2^2 = \int (|gv| + |g\bar{w}|)^2 dm \le 2 \int |gv|^2 dm + 2 \int |g\bar{w}|^2 dm = 2 \int |gv|^2 dm + 2 \int |gw|^2 dm < \infty$$

contrary to the choice of u.

Conclusion: there are $v,w\in \widetilde{H}^2$ such that either gv or gw is not in \widetilde{H}^2 .

Παρατήρηση 3. Το ενδιαφερον της δευτερης αποδείξης είναι οτι είναι «κατασκευαστικη» και στοιχείωδης, και δεν στηρίζεται στο θεωρημα κλείστου γραφηματός.