AN EXERCISE

Remark 1 If $f \in L^{1}(\mathbb{R})$ then $|f|$ cannot of course be bounded below on an unbounded interval (such as $[a, \infty)$). But it does not follow necessarily that $\lim _{|x| \rightarrow \infty} f(x)=0$, even when f is infinitely differentiable.
Example [Greg] Let $\phi:[-1,1] \rightarrow[0,1]$ be a continuous function, with $\phi(0)=1$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\phi\left(n^{2}(x-n)\right)$ when $x \in\left[n-\frac{1}{n^{2}}, n+\frac{1}{n^{2}}\right]$ for some $n \in \mathbb{N}, n \geq 2$ and $f(x)=0$ otherwise. Notice that f is supported on the union of the intervals $\left[n-\frac{1}{n^{2}}, n+\frac{1}{n^{2}}\right.$], $n \in \mathbb{N}$ which are disjoint. Hence f is continuous and $\|f\|_{1} \leq \sum_{n} \frac{1}{n^{2}}\|\phi\|_{1}<\infty$ so $f \in L^{1}(\mathbb{R})$. But $f(n)=1$ for all $n \in \mathbb{N}$.
Notice that we can even choose ϕ to be infinitely differentiable: take $\phi(x)=$ $\exp \left(\frac{-1}{1-x^{2}}\right)$ when $|x|<1$ and $\phi(x)=0$ otherwise. Then f will also be infinitely differentiable.
However since the integral $\int_{I_{n}}\left|f^{\prime}(x)\right| d x$ over the interval $I_{n}=\left[n-\frac{1}{n^{2}}, n+\frac{1}{n^{2}}\right]$ is a positive constant, independent of n, it follows that $\left\|f^{\prime}\right\|_{1}=\sum_{n} \int_{I_{n}}\left|f^{\prime}(x)\right| d x=$ $+\infty$, so f^{\prime} is not in L^{1}.

Remark 2 If f is differentiable and $f^{\prime} \in L^{1}(\mathbb{R})$ it does not follow that $f \in L^{1}(\mathbb{R})$. For example take f to be the indefinite integral $f(x)=\int_{-\infty}^{x} \phi(t) d t$ of the function ϕ in the previous example. Then f is non-negative and increasing, so it cannot be in L^{1} (if $a \geq 1$ then $f(a)=f(1)=\int_{\infty}^{1} \phi(t) d t$ so $\|f\|_{1} \geq \int_{a}^{\infty} f(t) d t \geq$ $f(1) m([a, \infty))=+\infty)$.
But if both f and f^{\prime} are in L^{1} then:
Exercise Suppose $f \in L^{1}(\mathbb{R})$ is an everywhere differentiable function such that $f^{\prime} \in L^{1}(\mathbb{R})$. Then

$$
\lim _{|x| \rightarrow \infty} f(x)=0
$$

Proof For every $[a, b] \subseteq \mathbb{R}$ we have $f^{\prime} \in L^{1}([a, b])$ and so (Koum-Negr. 7.19)

$$
\begin{equation*}
f(b)-f(a)=\int_{a}^{b} f^{\prime}(t) d t \tag{*}
\end{equation*}
$$

But since $\int_{-\infty}^{+\infty}\left|f^{\prime}(t)\right| d t<\infty$ given $\epsilon>0$ there exists $a_{0}>0$ so that

$$
\int_{a_{0}}^{+\infty}\left|f^{\prime}(t)\right| d t<\epsilon
$$

This shows that $\lim _{x \rightarrow \infty} f(x)$ exists. Then the fact that $\int_{x}^{\infty}|f(t)| d t \rightarrow 0$ as $x \rightarrow \infty$ forces $\lim _{x \rightarrow \infty} f(x)=0$. A similar argument yields $\lim _{x \rightarrow-\infty} f(x)=0$. In detail:

It follows from $(*)$ that for all $n, m \geq a_{0}$,

$$
|f(n)-f(m)| \leq\left|\int_{n}^{m} f^{\prime}(t) d t\right| \leq\left|\int_{n}^{m}\right| f^{\prime}(t)|d t| \leq \int_{a_{0}}^{+\infty}\left|f^{\prime}(t)\right| d t<\epsilon
$$

Thus $y:=\lim _{n} f(n)$ exists. Take $n_{0} \geq a_{0}$ with $\left|y-f\left(n_{0}\right)\right|<\epsilon$ and consider any $x>n_{0}$. Then

$$
|f(x)-y|=\left|\int_{n_{0}}^{x} f^{\prime}(t) d t+f\left(n_{0}\right)-y\right| \leq \int_{n_{0}}^{x}\left|f^{\prime}(t)\right| d t+\left|f\left(n_{0}\right)-y\right|<2 \epsilon
$$

It follows that $\lim _{x \rightarrow \infty} f(x)=y$. If $a>n_{0}>a_{0}$ then $|f(x)-y|<2 \epsilon$ when $x \geq a$ and so, for all $b>a$,

$$
\left|\int_{a}^{b} f(x) d x-y(b-a)\right| \leq \int_{a}^{b}|f(x)-y| d x<2 \epsilon(b-a) .
$$

therefore

$$
|y|<2 \epsilon+\frac{1}{b-a} \int_{a}^{b}|f(x)| d x
$$

But since $\int_{-\infty}^{\infty}|f(x)| d x<\infty$, we may choose a so that $\int_{a}^{\infty}|f(x)| d x<\epsilon$. Then $|y|<2 \epsilon+\frac{\epsilon}{b-a}$ for all $b>a$ and hence $y=0$.

