Preperation Problems

Analysis

Problem 1

Let x_{1} be a real number in the interval $(0,1)$ and define a sequence by $x_{n+1}=x_{n}-x_{n}^{n+1}$. Show that the sequence converges and $\lim _{n \rightarrow \infty} x_{n}>0$.

Problem 2

Prove that:

$$
\int_{0}^{\infty} \frac{|\sin x|}{x^{1 / 2}} d x=\infty
$$

Problem 3

Let a, x_{0} be positive numbers, and define the sequence $\left(x_{n}\right)$ recursively by:

$$
x_{n}=\frac{1}{2}\left(x_{n-1}+\frac{a}{x_{n-1}}\right)
$$

Prove that this sequence converges, and find its limit.

Problem 4

a) Let $f:[a, b] \rightarrow[0, \infty)$ be a continuous function which is not identically zero. Then prove that:

$$
\lim _{n \rightarrow \infty} \frac{\int_{a}^{b} f^{n+1}(x) d x}{\int_{a}^{b} f^{n}(x) d x}=\max \{f(x): x \in[a, b]\}
$$

b) Find a real number c and a positive number L such that:

$$
\lim _{r \rightarrow \infty} \frac{r^{c} \int_{0}^{\pi / 2} x^{r} \sin x d x}{\int_{0}^{\pi / 2} x^{r} \cos x d x}=L
$$

Problem 5

For an arbitrary number $x_{0} \in(0, \pi)$ define recursively the sequence $\left(x_{n}\right)$ by $x_{n+1}=\sin x_{n}, n \geq 0$. Compute $\lim _{n \rightarrow \infty} n^{1 / 2} x_{n}$.

Problem 6

Let $a_{0}=5 / 2$ and $a_{k}=a_{k-1}^{2}-2, k \geq 1$. Evaluate the product:

$$
\prod_{k=0}^{\infty}\left(1-a_{k}^{-1}\right)
$$

Problem 7

Let f be a continuous function defined on the unit square. Prove that:
$\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1} f^{2}(x, y) d x d y$
(Hint: Weierstass Theorem)

Problem 8

Let S be an uncountable set of disks in the plane. Prove that there is an uncountable subset S^{\prime} such that all the disks in S^{\prime} have a common interior point.

Problem 9

Evaluate the limit:

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

Linear Algebra

Problem 1

Let A, B be 2×2 real matrices satisfying $(A B-B A)^{n}=\mathcal{I}_{2}$ for some positive integer n. Prove that n is even and $(A B-B A)^{4}=\mathcal{I}_{2}$.

Problem 2

Let A be a real $n \times n$ matrix such that $A+A^{t}=\mathcal{O}_{n}$. Prove that:

$$
\operatorname{det}\left(\mathcal{I}_{n}+s A^{2}\right) \geq 0
$$

for every real number s.

Problem 3

Compute the determinant of the matrix $A=\left(\frac{1}{\min \{i, j\}}\right)_{i, j=1, \ldots, n}$.

Problem 4

Let A, B be $n \times n$ matrices that commute. Prove that if $\operatorname{det}(A+B) \geq 0$ then $\operatorname{det}\left(A^{k}+B^{k}\right) \geq 0$ for every natural number k.

Problem 5

Let A be an $n \times n$ matrix with complex entries whose minimal polynomial has degree k. Let a_{1}, \ldots, a_{k} be distinct complex numbers which are not eigenvalues of the matrix. Prove that there exists complex numbers b_{1}, \ldots, b_{k} such that:

$$
\sum_{i=1}^{k} b_{i}\left(A-a_{i} \mathcal{I}_{n}\right)^{-1}=\mathcal{I}_{n}
$$

Problem 6

Let A be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix B with the property:

$$
A B A=A
$$

Problem 7

Let $A_{1}, \ldots A_{n}$ be n points in the plane. We consider the following set:

$$
\mathcal{C}_{n}:=\left\{(i, j): d\left(A_{i} A_{j}\right)=1\right\}
$$

Prove that: $\left|\mathcal{C}_{n}\right| \leq 2 n^{3 / 2}$.

