Preparation Problems

Analysis

Problem 1

Let x_1 be a real number in the interval (0,1) and define a sequence by $x_{n+1} = x_n - x_n^{n+1}$. Show that the sequence converges and $\lim_{n\to\infty} x_n > 0$.

Problem 2

Prove that:

$$\int_0^\infty \frac{|\sin x|}{x^{1/2}} dx = \infty$$

Problem 3

Let a, x_0 be positive numbers, and define the sequence (x_n) recursively by:

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right)$$

Prove that this sequence converges, and find its limit.

Problem 4

a) Let $f: [a, b] \to [0, \infty)$ be a continuous function which is not identically zero. Then prove that:

$$\lim_{n \to \infty} \frac{\int_{a}^{b} f^{n+1}(x) dx}{\int_{a}^{b} f^{n}(x) dx} = \max \left\{ f\left(x\right) : x \in [a, b] \right\}$$

b) Find a real number c and a positive number L such that:

$$\lim_{r \to \infty} \frac{r^c \int_0^{\pi/2} x^r \sin x dx}{\int_0^{\pi/2} x^r \cos x dx} = L$$

Problem 5

For an arbitrary number $x_0 \in (0, \pi)$ define recursively the sequence (x_n) by $x_{n+1} = \sin x_n, n \ge 0$. Compute $\lim_{n\to\infty} n^{1/2} x_n$.

Problem 6

Let $a_0 = 5/2$ and $a_k = a_{k-1}^2 - 2, k \ge 1$. Evaluate the product:

$$\prod_{k=0}^{\infty} \left(1 - a_k^{-1} \right)$$

Problem 7

Let f be a continuous function defined on the unit square. Prove that:

$$\int_0^1 \left(\int_0^1 f(x,y)dy\right)^2 dx + \int_0^1 \left(\int_0^1 f(x,y)dx\right)^2 dy \le \left(\int_0^1 \int_0^1 f(x,y)dxdy\right)^2 + \int_0^1 \int_0^1 f^2(x,y)dxdy$$

(Hint: Weierstass Theorem)

Problem 8

Let S be an uncountable set of disks in the plane. Prove that there is an uncountable subset S' such that all the disks in S' have a common interior point.

Problem 9

Evaluate the limit:

$$\lim_{x \to 1^{-}} \prod_{n=0}^{\infty} \left(\frac{1+x^{n+1}}{1+x^n} \right)^{x^n}$$

Linear Algebra

Problem 1

Let A,B be 2 × 2 real matrices satisfying $(AB - BA)^n = \mathcal{I}_2$ for some positive integer n. Prove that n is even and $(AB - BA)^4 = \mathcal{I}_2$.

Problem 2

Let A be a real $n \times n$ matrix such that $A + A^t = \mathcal{O}_n$. Prove that:

$$\det\left(\mathcal{I}_n + sA^2\right) \ge 0$$

for every real number s.

Problem 3

Compute the determinant of the matrix $A = \left(\frac{1}{\min\{i,j\}}\right)_{i,j=1,\dots,n}$.

Problem 4

Let A, B be $n \times n$ matrices that commute. Prove that if det $(A + B) \ge 0$ then det $(A^k + B^k) \ge 0$ for every natural number k.

Problem 5

Let A be an $n \times n$ matrix with complex entries whose minimal polynomial has degree k. Let $a_1, ..., a_k$ be distinct complex numbers which are not eigenvalues of the matrix. Prove that there exists complex numbers $b_1, ..., b_k$ such that:

$$\sum_{i=1}^{k} b_i \left(A - a_i \mathcal{I}_n \right)^{-1} = \mathcal{I}_n$$

Problem 6

Let A be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix B with the property:

ABA = A

Problem 7

Let $A_1, \dots A_n$ be *n* points in the plane. We consider the following set:

$$C_n := \{(i, j) : d(A_i A_j) = 1\}$$

Prove that: $|\mathcal{C}_n| \leq 2n^{3/2}$.