
Stochastic Simulation

Preface

Mathematical modelling that traditionally contains important elements
of mathematics, probability theory and statistics has experienced a dras-
tic development during the last twenty years. Especially the application
of computer simulation has been crucial for the development of the field.
This course will give an introduction to modern simulation techniques. In
addition we aim at giving the participants a better intuitive knowledge of
basic concepts in probability theory and statistics. Only basic knowledge of
stochastics (probability theory and statistics) is required.

The course covers two quarters. In the first quarter, an exposition will be
given of traditional simulation techniques such as inversion, rejection, impor-
tance sampling and variance reduction techniques. Also modern techniques
such as Markov Chain Monte Carlo simulation will be treated, including the
Metropolis-Hastings algorithm. The second quarter of the course will cover
applications of simulation in a number of other fields, including operation
analysis, insurance and finance.

August 2004
Eva B. Vedel Jensen

Søren Asmussen

1

Simulation 1
Eva B. Vedel Jensen

1. Introduction

1.1. Scope of simulation
The term ‘computer intensive methods’ means different things to different

people. It is also a dynamic subject: what requires intensive computing
today may be solvable with a pocket calculator tomorrow. Not so long ago,
the calculation of normal probabilities to reasonable accuracy would have
required considerable CPU time.

An initial classification of computer intensive methods as applied to statis-
tics is the following:

• Computers for graphical data exploration.

• Computers for data modelling.

• Computers for inference.

There is some overlap in these three, but in this course the focus is on the
second and the third of the above.

A course in simulation may have two roles. The first is to gain some un-
derstanding and knowledge of the techniques and tools which are available.
The second is that many of the techniques are themselves clever applications
or interpretations of probability and statistics. So, understanding the princi-
ples behind the different algorithms can often lead to a better understanding
of probability and statistics generally. The simulation techniques have their
own intrinsic value as statistical exercises.

This is not a course on computing. We will not get into the details of
programming itself. Furthermore, this is not a course which will deal with
specialised statistical packages often used in statistical computing. All the
examples can be handled using simple S-plus (r) functions - far from the
most efficient way of implementing the various techniques. It is important to
recognise that high-dimensional complex problems do require efficient pro-
gramming (commonly in C or Fortran). However the emphasis of this course
is to illustrate the various methods and their applications on relatively simple
examples.

2

1.2. Computers as inference machines
It is something of a cliché to point out that computers have revolutionized

all aspects of statistics. In the context of inference there have really been
two substantial impacts: the first has been the freedom to make inferences
without the assumptions which standard techniques necessitate in order to
obtain analytic solutions - Normality, linearity, independence etc. The second
is the ability to apply standard type of models to situations of greater data
complexity - missing data, censored data.

1.3. References
These notes on simulation are adapted from earlier course notes produced

by Coles et al. (2001) and Jensen (2001). The notes also use ideas and results
from the forthcoming book Asmussen & Glynn (2004). Other important
books in the area are:

• Stochastic Simulation, B. Ripley.

• An Introduction to the Bootstrap, B. Efron and R. Tibshirani.

• Tools for Statistical Inference, M. Tanner.

• Markov Chain Monte Carlo in Practice, W. Gilks, S. Richardson and
D. Spiegelhalter.

3

2. Traditional simulation techniques

In this section we look at different techniques for simulating from distr-
butions and stochastic processes. In situations where we study a statistical
model, simulating from that model generates realizations which can be ana-
lyzed as a means of understanding the properties of that model.

2.1. Issues in simulation
Whatever the application, the role of simulation is to generate data which

have the statistical properties of some specified model. This generates two
questions:

• How to do it; and

• How to do it efficiently.

To some extent, just doing it is the priority, since computers are often suf-
ficiently fast for even inefficient routines to be quick. On the other hand,
efficient design of simulation can add insight into the statistical model it-
self, in addition to CPU savings. We will illustrate the idea with a simple
example.

2.2. Buffon’s needle
Perhaps the most famous simulation experiment is Buffon’s needle, origi-

nally designed to calculate an estimate of π. Here, we will use the experiment
to calculate an estimate of the length of the needle. There are a number of
ways the experiment can be improved on to give better estimates which will
highlight the general principle of designing simulated experiments to achieve
optimal accuracy in the sense of minimizing statistical variability.

Buffon’s original experiment is as follows. Imagine a grid of horizontal
parallel lines of spacing d, on which we randomly drop a needle of unknown
length `, with ` ≤ d. We repeat this experiment n times, and count R, the
number of times the needle intersects a line. An estimate of the needle length
` is

ˆ̀=
πd

2

R

n
. (1)

The rationale behind this is that if we let X be the distance from the centre
of the needle to the nearest lower grid line, and Θ be the angle that the
needle makes with the horizontal, then under the assumption of random
needle throwing, we have X ∼ U [0, d] and Θ ∼ U [0, π]. (Here, U [a, b] is the
notation used for the uniform distribution on the interval [a, b]). The needle

4

intersects the grid if and only if

X ≤ `

2
sin Θ or X ≥ d− `

2
sin Θ,

cf. Figure 1. The probability p that the needle intersects the grid is therefore

p = P (X ≤ `

2
sin Θ) + P (X ≥ d− `

2
sin Θ)

= 2P (X ≤ `

2
sin Θ)

= 2

∫ π

0

∫ `
2

sin θ

0

1

d

1

π
dxdθ

=
2

πd

∫ π

0

`

2
sin θdθ

=
2`

πd
.

Therefore,

` =
πd

2
p.

Since the probability of intersection p can be estimated by p̂ = R/n, we
obtain the estimator (1).

θ

d

x
l

Figure 1: Buffon’s needle.

A natural question is how precise is this estimator. To address this we
need to consider the variability of the estimator ˆ̀. Now, R ∼ b(n, p), so
Var(R/n) = p(1 − p)/n. Therefore,

Var(ˆ̀) = (
πd

2
)2 × p(1 − p)

n
.

5

There are many modifications that may improve the efficiency of this ex-
periment. One example is to use a grid of rectangles and basing the estimate
on the number of intersections with either or both horizontal or vertical lines.

2.3. Raw ingredients
The raw material for any simulation exercise is random digits. Transfor-

mation or other types of manipulation can then be applied to build simula-
tions of more complex distributions or systems. So, how can random digits
be generated?

It should be recognised that any algorithmic attempt to mimic random-
ness is just that: a mimic. By definition, if the sequence generated is deter-
ministic then it is not random. Thus, the trick is to use algorithms which
generate sequences of numbers which would pass all the tests of random-
ness (from the required distribution or process) despite their deterministic
derivation.

The most popular such algorithms today are linear congruential genera-
tors of the form

un =
xn

M
where xn+1 = (Axn + C) (mod M).

The number x1 determines deterministically the whole sequence {un} and is
called the seed. One should note that the range of the uns is not the whole
of [0, 1] but only {0, 1/M, 2/M, . . . , 1− 1/M} (often the value 0 is discarded
to avoid problems when using the sequence, say one needs division or to
take logarithms). Thus, of course, M should be large for the generator to
work well but there are other concerns such as periodicity. Namely, after
d ≤M steps, one of the numbers i/M will occur for the second time and the
algorithm will then produce replicates of cycles of length d or smaller.

The difficulty is therefore to choose a large M and associated A,C such
that the period is large, preferably M (this is denoted full period). One diffi-
culty with the generators having short period is that the gaps in the sequence
may not be evenly distributed. Fortunately, number-theoretic considerations
provide verifiable conditions under which linear congruential generators are
of full period. This has led to certain popular parameter choices for A, C
and M . A dominant one in earlier generators of computers and software
has M = 231 − 1 = 2147483647, A = 75 = 16807, C = 0. This choice has
the nice property that its period is (very) close to the number of machine-
representable integers in a 32-bit computer.

Ripley (1987) gives details of the number theoretic arguments which sup-
port this method, and gives illustrations of the problems which can arise
by using inappropriate choices of A, C and M . We will not worry about

6

this issue here, as any decent statistics package should have had its random
number generator checked pretty thoroughly. The point worth remembering
though is that computer generated random numbers are not random at all,
but (hopefully) they look random enough for that not to matter.

In subsequent sections then, we assume that we can generate a sequence
of numbers which can be regarded as the outcome of n random variables
U1, U2, . . . , Un which are independent and distributed according to the U [0, 1]
distribution. In the following section we look at ways of simulating data from
a specified univariate distribution with distribution function F , on the basis
of U1, U2, . . . , Un from the distribution U [0, 1].

2.4. Inversion
Let us suppose that F is continuous and strictly increasing. If X has

distribution function F , then F (X) is uniformly distributed on [0,1]. So by
inversion if U is uniformly distributed on [0,1], then F−1(U) has distribution
function F , since

P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

Thus, defining Xi = F−1(Ui), i = 1, . . . , n, generates a sequence of indepen-
dent random variables from F .

For example, to simulate from the exponential distribution with param-
eter λ, we use that

F (x) = 1 − exp(−λx), x > 0,

so
F−1(u) = −λ−1 log(1 − u), 0 < u < 1.

Since U ∼ U [0, 1] implies that 1 − U ∼ U [0, 1], we have that

−λ−1 logU1, . . . ,−λ−1 logUn

is a sequence of independent random variables from the exponential distri-
bution with parameter λ > 0.

This procedure works equally well for discrete distributions, provided we
interpret the inverse distribution function as

F−1(u) = min{x|F (x) ≥ u}.

The procedure then simply amounts to searching through a table of the
distribution function. For example, the distribution function of the Poisson
distribution with parameter 2 is

7

x F (x)
0 0 1353353
1 0.4060058
2 0.6766764
3 0.8571235
4 0.9473470
5 0.9834364
6 0.9954662
7 0.9989033
8 0.9997626
9 0.9999535

10 0.9999917

so, we generate a sequence of standard uniforms U1, U2, . . . , Un and for each
Ui obtain a Poisson (2) variate Xi where F (Xi − 1) < Ui ≤ F (Xi). So, for
example, if U1 = 0.7352 then X1 = 3.

More formally this procedure can be described as follows: Consider a
random variableX with a discrete distribution. Let us imagine, for simplicity,
that the possible values of X are the non-negative integers and that

P (X = j) = pj , j = 0, 1,

We then simulate X from U ∼ U [0, 1] using

X = j if

j−1
∑

i=0

pi < U ≤
j

∑

i=0

pi.

(We use the convention
∑j−1

i=0 pi = 0 if j = 0.)
Let qj = p0 + p1 + · · · + pj. We can then do the calculations with the

following algorithm

Algorithm 1

1. Simulate U from U [0, 1].

2. Set j = 0.

3. Repeat j = j + 1 until U ≤ qj.

4. Set X = j.

This method is not feasible when the number of non-zero probabilities is
large. On the average we use

∑∞
j=0 jpj steps to find X. If we know that

8

pj = 0 for j > k, a better way is to use the following algorithm (we let
q−1 = 0).

Algorithm 2

1. Simulate U from U [0, 1].

2. Set i = −1 and j = k.

3. While i+ 1 < j do

l=int((i+j)/2)

if U > ql then i = l else j = l.

4. Set X = j.

Here, int(x) is for x ∈ R the largest integer smaller than or equal to x. It
can be shown that this algorithm will use log(k)/ log(2) steps and so is much
quicker than the above method.

Returning to the continuous case, it may seem that the inversion method
is sufficiently universal to be the only method required. In fact, there are
many situations in which the inversion method is complicated to program
or excessively inefficient to run. The inversion method is only really useful
if the inverse distribution function is easy to program and compute. This is
not the case, for example, with the normal distribution function for which
the inverse distribution function, Φ−1, is not available analytically and slow
to evaluate numerically. To deal with such cases, we turn to a variety of
alternative schemes.

A concrete scheme for simulating normally distributed variables is as
follows: Let X, Y be independent and N(0, 1)-distributed. Then, X, Y is
distributed as R cos Θ, R sin Θ, where R2 is exponentially distributed with
parameter 1/2 and Θ ∼ U [0, 2π]. Furthermore, R and Θ are independent.
Therefore, we can take

X =
√

−2 log(U1) cos(2πU2), Y =
√

−2 log(U1) sin(2πU2),

where U1, U2 are independent and U [0, 1]-distributed.

2.5. Rejection sampling
The idea in rejection sampling is to simulate from one distribution which

is easy to simulate from, but then only accept a simulated value with some
probability. By choosing the probability correctly, we can ensure that the
sequence of accepted simulated values are from the desired distribution. This

9

technique is called rejection sampling. We will throughout this section assume
that the distribution F to be simulated from has a density function f . Recall
that the relation between F and f is

F (x) =

∫ x

−∞

f(z)dz, x ∈ R.

Let us start with a concrete example, viz. simulation from the Beta
distribution which has density

f(x) =

{ 1
B(α,β)

xα−1(1 − x)β−1 0 < x < 1,

0 otherwise,

where α, β > 0 and B(·, ·) is the Beta function defined by

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1dx.

Here,

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

where Γ(·) is the gamma function defined by

Γ(α) =

∫ ∞

0

xα−1e−xdx, α > 0.

Simulation by inversion is for the Beta distribution difficult because the
inverse distribution function is not known explicitly. If α > 1 and β > 1 we
can instead bound the density function by a rectangle,

{(x, f(x))|0 < x < 1} ⊆ [0, 1] × [0, K],

where

K =
1

B(α, β)

(α− 1)α−1(β − 1)β−1

(α + β − 2)α+β−2

and simulate random points (Xi, Yi) uniformly over the rectangle. We accept
Xi as an observation from f , if Yi ≤ f(Xi), cf. Figure 2.

This procedure works for the following reason: Let X, Y be independent
random variables such that X is uniform in [0, 1] and Y is uniform in [0, K].
Accept X, if Y ≤ f(X). We want to show that

P (X ≤ x|X accepted) =

∫ x

−∞

f(z)dz, x ∈ R.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

f(
x)

Figure 2: Rejection sampling from the Beta distribution with α = 2 and β = 2.

It is clear that

P (X ≤ x|X accepted) =

{

1 x ≥ 1,
0 x ≤ 0.

For 0 < x < 1, we use the following reasoning. First, recall that

P (X ≤ x|X accepted) =
P (X ≤ x,X accepted)

P (X accepted)
.

Letting 1{·} be the indicator function, we find

P (X ≤ x,X accepted) = P (X ≤ x, Y ≤ f(X))

=

∫ x

0

∫ f(z)

0

1

K
dydz

=

∫ x

0

f(z)

K
dz

=

∫ x

−∞

f(z)

K
dz.

Therefore,

P (X ≤ x|X accepted) =

∫ x

−∞
f(z)
K
dz

∫ ∞

−∞
f(z)
K
dz

=

∫ x

−∞

f(z)dz.

11

The efficiency of this method depends on how many points are rejected,
which in turn depends on how well the graph of f resembles the bounding
rectangle. To improve the efficiency of the procedure and to allow for situa-
tions where f may be unbounded or have unbounded support, the technique
can be modified to permit the bounding function to take any form Kg(x),
where g is the density of a distribution from which it is easy to simulate. If

f(x) ≤ Kg(x), x ∈ R,

for some K > 0, then we simulate from the density f in the following way:

Algorithm 3

1. Simulate X from g. Suppose X = x.

2. Simulate Y from U [0, Kg(x)].

3. Accept X if Y ≤ f(X).

4. Continue.

The justification of this more general procedure is along the same lines
as above. Let X denote a random variable with density g. Then,

P (X ≤ x,X accepted) = P (X ≤ x, Y ≤ f(X))

=

∫ x

−∞

∫ f(z)

0

g(z)
1

Kg(z)
1{g(z) > 0}dz

=

∫ x

−∞

f(z)

K
1{g(z) > 0}dz

=

∫ x

−∞

f(z)

K
dz. (2)

In particular,

P (X accepted) =

∫ ∞

−∞

f(z)

K
dz, (3)

so

P (X ≤ x|X accepted) =

∫ x

−∞
f(z)dz

∫ ∞

−∞
f(z)dz

=

∫ x

−∞

f(z)dz,

12

so that the accepted values do indeed have density f . Note that

P (X accepted) = P (Y ≤ f(X)) = 1/K.

Note also that f need only be known up to a constant of proportionality in
order for this technique to work. The efficiency of the procedure depends
on the degree of agreement between f and the bounding envelope Kg since
if a large value of K is necessary, then the acceptance probability is low, so
that large numbers of simulations are needed in order to achieve a required
sample size.

An adaption of the rejection algorithm which works well for many distri-
butions is the ratio of uniforms method. Here a pair of independent uniforms
are simulated and the ratio accepted as a simulation from the required dis-
trbution according to a rejection scheme. The method is explained in more
detail below.

Suppose we want to simulate from the density f which is known up to a
constant of proportionality. Thus,

f(x) = Ch(x), x ∈ R,

where the non-negative function h is known and C > 0 is an unknown con-
stant. The basis of the technique is the following result. Let

Ch = {(u, v) ∈ R
2 : 0 < u <

√

h(v/u)}.

Then, if (U, V) is uniformly distributed over Ch, then X = V/U has density
f .

So, to simulate from a density proportional to h, we simulate uniformly
over the region Ch, and take ratios of coordinates. In practice, Ch may be
complicated in shape, so the only practical solution is to bound it with a
rectangle (if possible), simulate within the rectangle (by a pair of uniforms),
and apply rejection.

The reason this works is the following. We want to show that

P (V/U ≤ x) =

∫ x

−∞

f(z)dz, x ∈ R. (4)

Letting ∆h be the area of Ch, we find that the density of (U, V) is

f(U,V)(u, v) =
1

∆h

1{(u, v) ∈ Ch}, (u, v) ∈ R
2.

13

Therefore,

P (V/U ≤ x)

=

∫ ∞

−∞

∫ ∞

−∞

1{v/u ≤ x}f(U,V)(u, v)dvdu

=
1

∆h

∫ ∞

−∞

∫ ∞

−∞

1{v/u ≤ x, 0 < u <
√

h(v/u)}dvdu

=
1

∆h

∫ ∞

−∞

∫ ∞

−∞

1{z ≤ x, 0 < u <
√

h(z)}udzdu

=
1

∆h

∫ x

−∞

∫

√
h(z)

0

ududz

=
1

2∆h

∫ x

−∞

h(z)dz.

In particular,

1 =

∫ ∞

−∞

∫ ∞

−∞

f(U,V)(u, v)dvdu =
1

2∆h

∫ ∞

−∞

h(z)dz =
1

2∆hC
.

The result (4) now follows immediately.
As discussed above, this is only useful if we can generate uniformly over

Ch, which is most likely to be achieved by simulating uniformly within a
rectangle [0, a]×[b−, b+] which contains Ch (provided such a rectangle exists).
If it does, we have the following algorithm.

Algorithm 4

1. Simulate independent U ∼ U [0, a], V ∼ U [b−, b+].

2. If (U, V) ∈ Ch, accept X = V/U , otherwise repeat.

3. Continue.

As an example, consider the Cauchy distribution with density

f(x) ∝ 1

1 + x2
, x ∈ R, (5)

cf. Figure 3. Then,

Ch = {(u, v) : 0 ≤ u ≤
√

h(v/u)}
= {(u, v) : 0 ≤ u, u2 + v2 ≤ 1},

a semicircle. Hence, we can take [0, a]× [b−, b+] = [0, 1]× [−1, 1] and get the
algorithm.

Algorithm 5

14

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

y

Figure 3: The Cauchy density.

1. Simulate independent U ∼ U [0, 1], V ∼ U [−1, 1].

2. If U2 + V 2 ≤ 1, accept X = V/U , otherwise repeat.

3. Continue.

A number of modifications have been proposed to improve the efficiency
of this procedure, which amount to rescaling and locating distributions before
applying the method.

Another method for improving the efficiency is by a process known as
‘squeezing’ or ‘pre-testing’. This applies to both the rejection and ratio of
uniform methods. The point is that, in the ratio of uniforms method for
example, the slowest part of the algorithm can be to check whether (u, v) ∈
Ch or not. However, there may be simpler regions C1 and C2 such that
C1 ⊂ Ch ⊂ C2, so that if (u, v) is found to lie inside C1 or outside C2 then
we immediately know whether it lies inside Ch or not.

2.6. Monte Carlo integration
On one form or another, the quantity to be determined by simulation can

often be formulated as an integral. This is obviously the case for expectation.
Suppose X is a random variable with density f and expectation E(X). Then,

E(X) =

∫ ∞

−∞

xf(x)dx,

so if X1, X2, . . . , Xn are independent random variables from the distribution
of X, then

n−1

n
∑

i=1

Xi

15

is an unbiased and consistent estimator of E(X). This argument can be
generalized. Suppose we wish to calculate

θ =

∫ ∞

−∞

ϕ(x)f(x)dx

which is E(ϕ(X)), where X has density f . Then, if X1, X2, . . . , Xn are
independent random variables from this distribution, then

θ̂ = n−1

n
∑

i=1

ϕ(Xi) (6)

is an unbiased and consistent estimator of θ. This approach is remarkably
easy to use, even in high dimensions. The cost for this simplicity is that the
variance may be high.

Normally, we state not only θ̂, but also a measure of how close to the
true value θ we expect θ̂ to be. If the variance of ϕ(X) is σ2 it follows from
the central limit theorem (will be presented in the probability theory course)
that

lim
n→∞

P (
1

σ

√
n(θ̂ − θ) ≤ x) = Φ(x).

An approximative 95% confidence interval is therefore given by
[

θ̂ − 1.96σ√
n
, θ̂ +

1.96σ√
n

]

. (7)

The choice of 95% is common but other values are, of course, possible.
Say 99%, corresponding to θ̂±2.58σ/

√
n. Also, one-sided confidence intervals

may sometimes be relevant. Assume, for example, that ϕ(X) is an indicator
function telling whether a certain system failure occurs or not. Then, θ is
the corresponding failure probability. An upper 95% confidence limit for θ is
θ̂ + 1.64σ/

√
n.

Note that informally phrased, a 4 times increase of n only implies a
doubling of our knowledge. This observation is a popular way of expressing
that n enters through the square root of n in the confidence interval (7). If
the variance σ2 is unknown we use the usual estimator

s2 =
1

n− 1

n
∑

i=1

(ϕ(Xi) − θ̂)2.

It can be shown that

lim
n→∞

P (
1

s

√
n(θ̂ − θ) ≤ x) = Φ(x).

16

and we can still use (7), with σ replaced by s, as an approximative confidence
interval.

We can also use (7) to determine n. If we wish that θ is determined with
a precision less than ε we must choose n such that

1.96σ√
n

= ε or n =
1.962σ2

ε2
. (8)

In addition to Monte Carlo integration as described above, a so-called
quasi Monte Carlo method exists. The random variables X1, X2, . . . , Xn are
chosen more regularly, resulting in a more precise estimate of θ, but, in
contrast to ordinary Monte Carlo integration, it is difficult to calculate a
confidence interval.

Finally, let us in this section discuss the problem of simulating the prob-
ability of a rare event. As an example, let ϕ(X) = 1{X > x}, such that
θ = Eϕ(X) = P (X > x). For this case σ2 = θ(1 − θ). If for instance
θ = 0.01 it is of no use if the precision of the simulated value is 0.02. The
relevant thing here is to require that the uncertainty is small compared to
θ. This is called a small relative error. If, for instance, we want that the
precision should be 1

10
of θ, that is, ε = 1

10
θ, we find from (8) that n should

be

n =
1.962θ(1 − θ)

(1
10
θ)2

=
(1.96 · 10)2

θ
(1 − θ) ≈ 400

θ
for small θ.

Taking θ = 0.01 we get n = 40.000 and taking θ = 10−6 we get n = 4 · 108.
This means that for very small values of θ it is necessary to find alternative
ways of simulating θ.

2.7. Variance reduction
A number of techniques are available for improving the precision of Monte-

Carlo integration. We will look at one of these in detail, and describe the
idea behind a second one.

2.7.1. Importance sampling
Let us suppose that we want to calculate

θ =

∫ ∞

−∞

ϕ(x)f(x)dx, (9)

where f is the density of a random variable X. Let us suppose that g is
another density such that

g(x) = 0 ⇒ ϕ(x)f(x) = 0.

17

Let ψ(x) = ϕ(x)f(x)/g(x). (For g(x) = 0, we let ψ(x) = 0, say.) Then, we
can rewrite θ as

θ =

∫ ∞

−∞

ϕ(x)f(x)1{g(x) > 0}dx

=

∫ ∞

−∞

ψ(x)g(x)1{g(x) > 0}dx

=

∫ ∞

−∞

ψ(x)g(x)dx. (10)

Hence, if X1, X2, . . . , Xn are independent random variables from the distri-
bution with density g, then we can estimate the integral by the unbiased and
consistent estimator

θ̂g = n−1
n

∑

i=1

ψ(Xi) (11)

for which the variance is

Var(θ̂g) = n−1

∫ ∞

−∞

{ψ(x) − θ}2g(x)dx (12)

= n−1[

∫ ∞

−∞

ψ(x)2g(x)dx− θ2].

This variance can be very low, much lower than the variance of the estimator
θ̂ given in (6), if g can be chosen so that ψ is nearly constant on the set
{x ∈ R : g(x) > 0}. A constant ψ corresponds to choosing g as

g(x) =
ϕ(x)f(x)

∫ ∞

−∞
ϕ(y)f(y)dy

.

Let us here give a very simple example. We want to calculate the prob-
ability that an exponentially distributed random variable with parameter 1
exceeds u

θ(u) =

∫ ∞

u

e−xdx = e−u, u > 0. (13)

We suppose that u is very large such that θ(u) is very small. Here, θ(u) can
be expressed as (9) with

ϕ(x) = 1{u < x}
and

f(x) =

{

e−x x > 0,
0 otherwise.

18

As alternative density g we will use the density of an exponential distribution
with parameter λ < 1,

g(x) =

{

λe−λx x > 0,
0 otherwise.

Note that this distribution has mean 1/λ > 1. We will simulateX1, X2, . . . , Xn

from g and estimate θ(u) by θ̂g where

ψ(x) =
ϕ(x)f(x)

g(x)
= λ−1e(λ−1)x1{u < x}.

In order to find the variance of θ̂g, we need to calculate (14). We find
∫ ∞

−∞

ψ(x)2g(x)dx

=

∫ ∞

u

λ−2e2(λ−1)xλe−λxdx

=
1

λ

∫ ∞

u

e−(2−λ)xdx

= {λ(2 − λ)}−1e−(2−λ)u,

and therefore,

Var(θ̂g) = n−1e−2u{ eλu

λ(2 − λ)
− 1}.

The relative variance is

Var(θ̂g)

θ(u)2
= n−1{ eλu

λ(2 − λ)
− 1}. (14)

A natural choice is then to take λ to minimize (14) for a given value of u:

λ(u) =
2 + 2u−

√

(2 + 2u)2 − 8u

2u
= 1 +

1

u
−

√

1 +
1

u2
≈ 1

u
,

for large u, with the corresponding relative variance ≈ 1
n

1
2
e1u. This should be

compared to the variance in the case where we simulate from an exponential
distribution with parameter λ = 1 where the relative variance (14) is ∼ 1

n
eu.

Note that the best value λ(u) = 1
u

corresponds to choosing λ so that the
mean value in the corresponding distribution is u.

As another example, suppose we want to estimate the probability P (X >
2) where X follows a Cauchy distribution with the density function

f(x) =
1

π(1 + x2)
, x ∈ R,

19

so we require the integral
∫ ∞

−∞

1{x ∈ A}f(x)dx,

where A = {x ∈ R : x > 2}. We could simulate from the Cauchy distribution
directly and apply (6) with ϕ(x) = 1{x ∈ A}, but the variance of this
estimator is substantial.

Alternatively, we observe that for large x, f(x) is close to proportional to
the density g given by

g(x) =

{

2/x2 x > 2,
0 otherwise.

By inversion, we can simulate from g by letting Xi = 2/Ui where Ui ∼ U [0, 1].
Thus, our estimator becomes, cf. (11)

θ̂g = n−1
n

∑

i=1

X2
i

2π(1 +X2
i)
,

where Xi = 2/Ui.

2.7.2. Control and antithetic variables
In general, the idea of control variables is to modify an estimator accord-

ing to a correlated variable whose mean is known. Thus, let us suppose that
we wish to estimate θ = E(Z) where Z = ϕ(X). Let W = ψ(X) be the
control variable with known E(W). We suppose that ϕ(X) and ψ(X) are
positively correlated and with variances of similar magnitudes. For a sample
X1, X2, . . . , Xn, we use the estimator

θ̂ = n−1
n

∑

i=1

{Zi −Wi} + E(W),

where Zi = ϕ(Xi) and Wi = ψ(Xi). Clearly, θ̂ is an unbiased and consistent
estimator of θ, but since

Var(θ̂) = n−1[Var(Z) − 2Cov(W,Z) + Var(W)],

the variance can be low if Cov(W,Z) is sufficiently large. A typical choice
for W is the first terms of a Taylor series expansion of ϕ(X).

Antithetic variables are almost the converse of control variables: we use a
variate Z∗ which has the same distribution as Z, but is negatively correlated
with Z. Then,

θ̂ = n−1

n
∑

i=1

Zi + Z∗
i

2

20

is an unbiased and consistent estimator of θ, with variance

Var(θ̂) = n−1 1

2
Var(Z){1 + Cor(Z,Z∗)},

where Cor is the notation used for correlation. This constitutes at least a 2
fold reduction in variance, if the correlation is negative. For simple problems,
antithetic variables are easily achieved by inversion, since if Z = F−1(U)
then Z∗ = F−1(1 − U) has the same distribution as Z and can be shown to
be negatively correlated with Z for all choices of F . Applying this to the
estimation of θ = 1

2
−

∫ 2

0
[π(1 + x2)]−1dx in the Cauchy example leads to the

estimator
1

2
− 1

n

n
∑

i=1

{ 1

π(1 + U2
i)

+
1

π(1 + (2 − Ui)2)
}

where Ui ∼ U [0, 2].

21

3. Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is probably 50 years old, and has
been both developed and extensively used in physics for the last four decades.
However, the most spectacular increase in its impact and influence in statis-
tics and probability has come since the late 80s.

It has now come to be an all-pervading technique in computational stochas-
tics, in particular for Bayesian inference, and especially in complex stochastic
systems. A huge research effort is being expended, in devising new generic
techniques, in extending the application of existing techniques, and in inves-
tigating the mathematical properties of the methods.

3.1. An example
The example described in this section originates from statistical physics.

In this field, MCMC is used to simulate models for interaction between par-
ticles.

Let S be the region where the particles are living. For simplicity, we
assume here that S is the unit square in the plane,

S = {(a, b) ∈ R
2 : 0 ≤ a ≤ 1, 0 ≤ b ≤ 1}.

Let ∼ be a symmetric relation on S. For instance, ∼ may be the distance
relation, defined for a pair of points (particles) x1, x2 ∈ S by

x1 ∼ x2 ⇔ ||x1 − x2|| < R. (15)

Two points x1, x2 in S are said to be neighbours if x1 ∼ x2.
The model describes the interaction between a set of n points (particles)

in S. This set is denoted x = {x1, . . . , xn} where xi ∈ S. Under the model,
the probability density of x is

f(x) ∝ π(x) = γs(x), x = {x1, . . . , xn}, xi ∈ S, (16)

where s(x) is the number of neighbour pairs in x and γ ≥ 0 is a parameter.
If x = {x1, . . . , xn}, then

s(x) =

n
∑

i=1

n
∑

j=i+1

1(xi ∼ xj).

This model is called the Strauss model.
The density f is only specified up to a constant of proportionality. The

full specification is
f(x) = α(γ)γs(x), (17)

22

where

α(γ) = [

∫

S

· · ·
∫

S

γs({x1,...,xn})dxn · · · dx1]
−1 (18)

is the normalizing constant of the density. It is complicated to calculate α(γ)
when n is large. Also, for γ 6= 1 simple methods such as those resulting in
(6) may lead to very inaccurate estimates of α(γ). If possible, one should
avoid to try to determine α(γ).

Let us now discuss the role of the parameter γ. It can be regarded as an
interaction parameter. For γ = 1, the density f is constant. Using (18), we
find

f(x) = α(1) = (
1

area(S)
)n = 1, x = {x1, . . . , xn}, xi ∈ S.

For γ > 1, the point patterns x with high probability density f(x) are those
with a high number of neighbours s(x). So, for γ > 1, the model will typically
produce clustered point patterns. For γ < 1, point patterns with a small
value of s(x) are preferred, corresponding to regular point patterns where
points do not come too close to each other. In the extreme case where γ = 0,
the density (16) is only positive if s(x) = 0 so in this case the model will
always generate point patterns x with no neighbour pairs. If the distance
relation is used, s(x) = 0 means that the distance between any pair of points
is at least R. If we in such a point pattern x place circular disks of radii R/2,
centered at each point in x, then the disks will not overlap. For γ = 0, the
model is called the hard-core model.

Using MCMC, it is possible to simulate from the model and get an impres-
sion of how point patterns typically look like. It is also possible to estimate
γ, using MCMC, when an actual point pattern x has been observed. The
likelihood function is the density (17) regarded as a function of γ,

L(γ) = α(γ)γs(x).

The maximum likelihood estimate γ̂ of γ is the value of γ that maximizes
L(γ). It can be shown that if s(x) > 0, γ̂ is the unique solution to

Eγs(X) = s(x),

where x is the observed point pattern and

Eγs(X) =

∫

S

· · ·
∫

S

s(x)α(γ)γs(x)dxn · · · dx1.

The mean value cannot be determined explicitly but as we shall see, it can
be found by simulation, using MCMC.

23

3.2. The Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm is a general algorithm that can be

used to simulate from a density f of an m−dimensional random variable. It
is only necessary to know f up to a constant of proportionality. We assume
that

f(x) ∝ π(x), x ∈ R
m,

where π is known.
The Metropolis-Hastings algorithm generates a Markov chain

Xt, t = 0, 1, . . . ,

that has an equilibrium distribution with density f . Note that Xt ∈ R
m. At

each step t of the algorithm, a new ‘candidate’ value Y is proposed according
to a proposal density q(y|Xt) that may depend on the actual state Xt of the
Markov chain. If Y is accepted, then Xt+1 = Y , otherwise Xt+1 = Xt.

Expressed more precisely, the algorithm can be described as follows:

Algorithm 6

1. Initialize X0; set t = 0.

2. Simulate Y from the proposal distribution with density q(y|Xt).

3. Simulate U ∼ U [0, 1].

4. If U ≤ α(Xt, Y), where

α(x, y) = min(1,
π(y)q(x|y)
π(x)q(y|x)),

then set Xt+1 = Y , otherwise set Xt+1 = Xt.

5. Increment t and go to 2.

If m > 1 and m is a multiple of n (m = kn, say), then we can split Xt

into n components
Xt = (Xt1, . . . , Xtn)

with Xti ∈ R
k, i = 1, . . . , n. The method of generating the proposal Y can

then be modified as follows. A uniform integer i amongst 1, . . . , n is chosen
with probability 1/n and a random proposal V ∈ R

m is generated such that

Y = (Xt1, . . . , Xt,i−1, V,Xt,i+1, . . . , Xtn).

24

The density q(y|Xt) is replaced by the density q(v|Xt) of the proposal V .
Under mild regularity conditions, the Metropolis-Hastings algorithm will

produce a Markov chain that has the distribution with density f as equilib-
rium distribution. We will argue for this statement in the next sections.

We will finish this section by studying how the Metropolis-Hastings algo-
rithm can be used to simulate the Strauss model.

Example (continued). Let Xt = (Xt1, . . . , Xtn) be the n points in S after
t iterations of the algorithm. Since Xti ∈ S ⊂ R

2, m = 2n. For simplicity,
we will omit t and write X instead of Xt. Furthermore, let us suppose that
the proposal Y is obtained by removing a uniform point W from the point
pattern X and adding V , which is uniform in S. So,

Y = (X\{W}) ∪ {V }

and

q(v|x) =
1

area(S)
= 1.

The acceptance probability becomes

α(x, y) = min(1,
π(y)q(w|y)
π(x)q(v|x))

= min(1,
γs(y)

γs(x)
)

= min(1, γs(y)−s(x)).

Notice that for w ∈ x

s(x) = s(x\{w}) + s(x\{w};w), (19)

where
s(x\{w};w) =

∑

z∈x\{w}

1{w ∼ z}.

From (19), we get for a point pattern x with w ∈ x and v 6∈ x,

s((x\{w}) ∪ {v}) = s(x\{w}) + s(x\{w}; v).

Therefore, for x with w ∈ x and v 6∈ x, we get

s((x\{w}) ∪ {v}) − s(x) = s(x\{w}; v)− s(x\{w};w).

This observation is useful when implementing the Metropolis-Hastings algo-
rithm for the Strauss model.

25

3.3. Markov chains
In this section, we will give the basic concepts and results concerning

Markov chains that is needed in order to prove that the Metropolis-Hastings
algorithm actually works.

In the course Mathematical Modelling 2, Markov chains with finite state
space have been treated. Here, we study Markov chains with continuous state
space (Rm). We will try to be as comprehensive as needed for understanding
the simulation algorithms. It is, however, outside the scope of this simulation
course to deal with Markov chains with continuous state space in depth.

Let {Xt}∞t=0 be a Markov chain on R
m such that for any t the condi-

tional distribution of Xt given X0, . . . , Xt−1 is the same as the conditional
distribution of Xt given Xt−1. We suppose that Xt has density fXt

.
We say that {Xt}∞t=0 has the equilibrium distribution with density f pro-

vided that for all x ∈ R
m and all A ∈ B(Rm)

P t(x,A) →
∫

A

f(y)dy, (20)

for t→ ∞, where y = (y1, . . . , ym) and dy = dy1 · · · dym. Here,

P t(x,A) = P (Xt ∈ A|X0 = x)

is the t−step transition probability.
The density f is called invariant for the Markov chain {Xt}∞t=0 if

Xt has density f ⇒ Xt+1 has density f.

Note that

P (Xt+1 ∈ A) =

∫

Rm

P (Xt+1 ∈ A|Xt = x)fXt
(x)dx

=

∫

Rm

P (x,A)fXt
(x)dx,

where P (x,A) = P 1(x,A). Since we also have

P (Xt+1 ∈ A) =

∫

A

fXt+1
(x)dx,

invariance of f is equivalent to

∫

A

f(x)dx =

∫

Rm

P (x,A)f(x)dx for all A ∈ B(Rm). (21)

26

It can be shown that if {Xt}∞t=0 has the equilibrium distribution with
density f , then f is invariant. To see this, we use the Chapman-Kolmogorov
formula

P t+1(x,A) =

∫

Rm

P (y, A)P t(x, dy). (22)

If {Xt}∞t=0 has the equilibrium distribution with density f , then as t → ∞,
the left-hand side of (22) tends to

∫

A
f(y)dy while the right-hand side of (22)

tends to
∫

Rm

P (y, A)f(y)dy.

It follows that (21) is satisfied and f is therefore invariant.
In practice, any Markov chain Monte Carlo algorithm is therefore con-

structed so that f becomes invariant. In fact, for most MCMC algorithms
(including the Metropolis-Hastings algorithm, as we shall see in the next
section) reversibility holds, that is

∫

B

P (x,A)f(x)dx =

∫

A

P (x,B)f(x)dx (23)

for all A,B ∈ B(Rm). Clearly, reversibility implies invariance.
It can be shown that for a time homogeneous Markov chain with invariant

density f the transition probabilities converge if the chain in addition is
irreducible and aperiodic. By definition, the chain is irreducible if for all
x ∈ R

m and all A ∈ B(Rm) with

∫

A

f(y)dy > 0, (24)

there exists t = t(x,A) such that P t(x,A) > 0. Moreover, the chain is said
to be aperiodic if there are no disjoint sets A0, . . . , Ad−1 ∈ B(Rm) with d ≥ 2
such that P (x,Aj(i)) = 1 for all x ∈ Ai and i = 0, . . . , d− 1 where

j(i) = i+ 1 mod d.

It can be shown that (20) holds for almost all x and all A ∈ B(Rm) if the
chain is irreducible and aperiodic and has f as invariant density.

In order to get rid of the nullset, Harris recurrence is needed. This means
that for all x ∈ R

m and all A ∈ B(Rm) with (24) satisfied, there exists
t = t(x,A) such that

P (Xt ∈ A for some t = t(x,A) <∞|X0 = x) = P t(x,A) = 1.

Clearly, Harris recurrence implies irreducibility.

27

3.4. The Metropolis-Hastings algorithm (continued)
In this section, we will show that by choosing the acceptance probability

as described in Algorithm 6, the resulting Markov chain becomes reversible,
i.e. (23) is satisfied for all A,B ∈ B(Rm). This in turn implies that f is
an invariant density. Irreducibility and aperiodicity must be checked in each
separate case.

First, we show that the transition probabilities are of the form

P (x,A) =

∫

A

α(x, y)q(y|x)dy + (1 − p(x))1{x ∈ A}, (25)

x ∈ R
m, A ∈ B(Rm), where

p(x) =

∫

Rm

q(y|x)α(x, y)dy.

In order to show (25), we use that

Xt+1 = 1{0 ≤ U ≤ α(Xt, Y)} · Y + 1{α(Xt, Y) < U ≤ 1} ·Xt,

cf. Algorithm 6. The proposal Y is accepted if U ≤ α(Xt, Y). We get

P (Xt+1 ∈ A, Y accepted |Xt = x)

= P (Y ∈ A,U ≤ α(x, Y)|Xt = x)

=

∫

A

P (U ≤ α(x, y))q(y|x)dy

=

∫

A

α(x, y)q(y|x)dy.

In particular,

P (Y accepted |Xt = x) =

∫

Rm

α(x, y)q(y|x)dy = p(x).

Therefore,

P (x,A)

= P (Xt+1 ∈ A|Xt = x)

= P (Xt+1 ∈ A, Y accepted |Xt = x) + P (Xt+1 ∈ A, Y not accepted |Xt = x)

=

∫

A

α(x, y)q(y|x)dy + (1 − p(x))1{x ∈ A},

and (25) holds.

28

In order to show reversibility, we also need the following identity

f(x)q(y|x)α(x, y) = f(y)q(x|y)α(y, x), (26)

which will be shown as an exercise. Using (25) and (26), we finally get

∫

B

P (x,A)f(x)dx

=

∫

B

[

∫

A

α(x, y)q(y|x)dy + (1 − p(x))1{x ∈ A}]f(x)dx

=

∫

B

∫

A

α(x, y)q(y|x)f(x)dydx+

∫

Rm

1{x ∈ A}1{x ∈ B}(1 − p(x))f(x)dx

=

∫

A

∫

B

α(y, x)q(x|y)f(y)dxdy+

∫

Rm

1{x ∈ A}1{x ∈ B}(1 − p(x))f(x)dx

=

∫

A

P (x,B)f(x)dx,

and the Markov chain defined in Algorithm 6 is thereby reversible.

3.5. Monte Carlo integration, using MCMC
As in Section 2.6, the aim of the MCMC simulations is typically to esti-

mate an integral of the form

θ = Eϕ(X) =

∫

Rm

ϕ(x)f(x)dx.

Here, f is the density of an m−dimensional random variable X and

ϕ : R
m → R.

If the Markov chain {Xt}∞t=0 is judged to be in equilibrium at time t0, then
θ is estimated by

θ̂ =
1

N

t0+N
∑

t=t0+1

ϕ(Xt),

where N is a suitably chosen integer.
Since the Xts are correlated, it is more complicated to evaluate the vari-

ance of θ̂ than in the case of independence. Since the Markov chain is time
homogenous, Cov(ϕ(Xs), ϕ(Xs+t)) does not depend on s. Letting

ζ(t) = Cov(ϕ(Xs), ϕ(Xs+t)), (27)

29

the variance becomes

Var(θ̂) =
1

N2

t0+N
∑

t1=t0+1

t0+N
∑

t2=t0+1

Cov(Xt1 , Xt2)

=
1

N2

t0+N
∑

t1=t0+1

t0+N
∑

t2=t0+1

ζ(t2 − t1)

=
1

N2

N−1
∑

t=−N+1

(N − |t|)ζ(t).

Note that the covariances (27) depend not only on f and ϕ but also on the
transition probabilities.

Several possibilities for estimating Var(θ̂) have been proposed. A main
option is time series methods. Furthermore,

lim
N→∞

P ([
∞

∑

t=−∞

ζ(t)]−1
√
N(θ̂ − θ) ≤ x) = Φ(x), x ∈ R, (28)

which holds under weak regularity conditions. To be more precise, (28) holds
if Eϕ(X)2 <∞ and the Markov chain {Xt}∞t=0 is so-called geometric ergodic.

Variance reduction techniques are used in connection with MCMC. This
is in particular used in the context where the density f is of the form

f(x; γ) = α(γ)π(x; γ), x ∈ R
m,

where γ ∈ Γ ⊆ R
l is an unknown parameter, π is a known function parametrized

by γ and α(γ) is the normalization constant

α(γ) = [

∫

Rm

π(x; γ)dx]−1.

For statistical analysis, it is sometimes necessary to know α(γ) (at least up
to a constant). One possibility here is to notice that

α(γ0)

α(γ)
=

∫

Rm

π(x; γ)

π(x; γ0)
f(x; γ0)dx = Eγ0

π(X; γ)

π(X; γ0)
,

where Eγ0
X indicates that we take mean value of a random variable with

density f(·; γ0). We can therefore estimate α(γ0)/α(γ) by

1

N

t0+N
∑

t0+1

π(Xt; γ)

π(Xt; γ0)
, (29)

30

where {Xt}∞t=0 is a Markov chain with equilibrium density f(·; γ0). If γ is far
from γ0, it is a good idea to define γ0, γ1, . . . , γK where γi−1 and γi are close
to each other and γK = γ. One then use that

α(γ0)

α(γ)
=

K
∏

i=1

α(γi−1)

α(γi)
,

and estimate each factor α(γi−1)/α(γi) separately by the procedure described
above.

Example (continued). For the Strauss model defined on the unit square
S, m = 2n, Γ = [0,∞) and

π(x; γ) =

{

γs(x) x = {x1, . . . , xn}, xi ∈ S
0 otherwise.

Here, (29) becomes

1

N

t0+N
∑

t0+1

(
γ

γ0
)s(Xt), (30)

Clearly, unless γ and γ0 are close, the estimator (30) may have a very large
variance.

31

4. Models for point processes

In this section, we will discuss models for finite point patterns x observed
in a bounded subset S of the plane. Models of this type are called point
process models.

A point process X on S is a random finite set of points in S. We let S
denote the set of finite subsets of S. The number n(X) of points in X is not
necessarily fixed but a random variable.

A famous theorem is the void probability theorem, see e.g. Daley & Vere-
Jones (1988). This theorem concerns the void (empty set) probabilities,
i.e. the probabilities that there are no points in A where A varies over
(essentially) all subsets of S. To be more precise, A belongs to the Borel
subsets B(S) of S which is a very rich class a sets.

Theorem 1. The distribution of a point process X on S is determined by
the void probabilities

v(A) = P (n(X ∩ A) = 0), A ∈ B(S). �

The void probability theorem is a consequence of a deep result in random
set theory, related to so-called capacity functionals. As will be apparent in
what follows, this theorem is very useful.

4.1. The Poisson point process
The homogenous planar Poisson point process is the cornerstone on which

the theory of point processes is built. It represents the simplest possible
stochastic mechanism for the generation of point patterns, and in applications
the process is used as an idealized standard of complete spatial randomness.

The homogeneous Poisson point process X on S with intensity λ > 0 is
defined by

(P1) n(X ∩ A) ∼ po(λarea(A)), A ∈ B(S)

(P2) For A1, . . . , Ak ∈ B(S) disjoint,
n(X ∩ A1), . . . , n(X ∩ Ak) are independent

Property (P2) can be interpreted as spatial randomness or lack of interaction,
since the process behaves independently in disjoint regions.

According to (P1), the mean number of points in A only depends on the
area of A and not on the position of A inside S. This is the reason why the
process is called homogeneous.

A class of inhomogenous processes is obtained if the constant intensity λ
is replaced by a variable intensity function λ defined on S. A Poisson point
process X on S with intensity function λ : S → [0,∞) is defined by

32

(P1’) n(X ∩ A) ∼ po(
∫

A
λ(y)dy), A ∈ B(S)

and (P2) above.
A Poisson point process has the following property:

Theorem 2. Let X be a Poisson point process on S with intensity function
λ : S → [0,∞). Let A ∈ B(S). Then, conditionally on n(X ∩ A) = n,
X ∩A is distributed as {X1, . . . , Xn}, where X1, . . . , Xn are independent and
identically distributed random points in A with density proportional to λ.

Proof. Since X ∩ A is a point process on A, the distribution of X ∩ A is
determined by the void probabilities, cf. Theorem 1. Let us for any B ∈ B(S)
use the short notation

µ(B) =

∫

B

λ(y)dy. (31)

Then, for B ⊆ A we get the following void probability

P (n(X ∩ B) = 0|n(X ∩A) = n)

=
P (n(X ∩B) = 0, n(X ∩ A) = n)

P (n(X ∩A) = n)

=
P (n(X ∩B) = 0, n(X ∩ A\B) = n)

P (n(X ∩ A) = n)

=
e−µ(B) · e−µ(A\B) µ(A\B)n

n!

e−µ(A) µ(A)n

n!

= (
µ(A\B)

µ(A)
)n.

This agrees with the void probabilities for n independent random points
X1, . . . , Xn in A with density proportional to λ, since for such points we
have

P (X1 6∈ B, · · · , Xn 6∈ B)

= P (X1 ∈ A\B, · · · , Xn ∈ A\B)

= (
µ(A\B)

µ(A)
)n.

�

Using the definition of a Poisson point process, it is possible to derive a
formula for probabilities associated with the Poisson point process. Let F
be an event for the point process. For instance,

F = {x ∈ S : n(x) = k},

33

i.e. F is the event that the point pattern contains k points. For an event F ,
we have with µ defined as in (31)

P (X ∈ F) =
∞

∑

n=0

exp(−µ(S))
1

n!

∫

Sn

1{{x1, . . . , xn} ∈ F}
n

∏

i=1

λ(xi)dx1 · · · dxn.

(32)
The proof of this result uses that n(X) ∼ Po(µ(S)) and Theorem 2.

The result can be extended to a result for mean values. Let g be a non-
negative function defined on S. Then,

Eg(X) =

∞
∑

n=0

exp(−µ(S))
1

n!

∫

Sn

g({x1, . . . , xn})
n

∏

i=1

λ(xi)dx1 · · · dxn.

Note that if we let g be the indicator function of the event F , then we again
obtain (32).

The intensity function of a Poisson point process may depend on explana-
tory variables. One simple geometric example is an intensity function of the
form

λ(y) = g(dC(y)), y ∈ S,

where dC(y) is the distance from y to a reference structure C ⊂ S. For
instance, the reference structure may be a point or a planar curve. For
statistical purposes, it is a good idea to model λ parametrically, for instance
using an exponential expression as

λ(y) = αeθ·τ(y), y ∈ S,

where α > 0, θ ∈ Θ ⊆ R
l and τ(y) ∈ R

l.

4.2. Markov point processes
In this section, we will define and study Markov point processes which

are finite point processes with a particularly simple interaction structure.
We start by defining the concept of a neighbourhood.

Definition 1. Given a symmetric relation ∼ on S, two points y1, y2 ∈ S are
called neighbours if y1 ∼ y2. The neighbourhood of a set A ⊆ S is denoted

∂A = {y ∈ S : y ∼ a for some a ∈ A}.

In particular for A = {a}, we use the short notation

∂a = {y ∈ S : y ∼ a}.

34

Using the concept of a neighbourhood, we can define a Markov point
process X. Such a process has a density f with respect to the homogeneous
Poisson point process with intensity 1. The density is defined on S, the set
of finite subsets of S. Probabilities can be calculated as

P (X ∈ F) =
∑∞

n=0 exp(−area(S))
1

n!

∫

Sn

1({x1, . . . , xn} ∈ F)

×f({x1, . . . , xn})dx1 · · · dxn.

Conditionally on n(X) = n, the density of X = {X1, . . . , Xn} is proportional
to f({x1, . . . , xn}).

The definition of a Markov point process is given below. The requirement
(M2) in the definition is the essential one which concerns ‘the conditional
intensity of adding an extra point u to the point pattern x’.

Definition 2. A point process X with density f is a Markov point process
with respect to the relation ∼ if for all x ∈ S

(M1) f(x) > 0 ⇒ f(y) > 0 for all y ⊆ x

(M2) if f(x) > 0, then

λ(u; x) = f(x ∪ {u})/f(x), u ∈ S, x ∈ S, u 6∈ x

depends only on u and ∂u ∩ x.

Example 1. (The Poisson point process) A Poisson point process with
intensity λ > 0 has the following density

f(x) = e(1−λ)area(S)λn(x), x ∈ S.

This process is Markov with respect to any relation ∼ since f(x) > 0 for all
x ∈ S and λ(u; x) = λ is constant for all u and x such that u /∈ x.

Example 2. (Hard-core model) Suppose we want to model a pattern of
non-overlapping circular discs with fixed diameter R > 0. Then no disc centre
can be closer that R to another disc centre. Assuming no other interactions
occur, a density could be

f(x) = f({x1, . . . , xn}) = αβn1{||xi − xj || ≥ R, i 6= j}, α, β > 0.

This model is called a hard-core model.
Let ∼ be the symmetric relation on S given by

y1 ∼ y2 ⇔ ||y1 − y2|| < R.

35

The hard-core model is then Markov with respect to this relation.
Thus, suppose that f(x) > 0. We then have ||xi − xj || ≥ R, for all i 6= j,

i.e. x does not contain points closer than R together. If y ⊆ x, then also y
does not contain points closer than R together, hence f(y) > 0.

Also, (M2) is fulfilled, since for u ∈ S and x = {x1, . . . , xn} ∈ S such
that u /∈ x

λ(u; x)

=
αβn+11{||xi − xj || ≥ R, i 6= j)}1{||xi − u|| ≥ R, i = 1, . . . , n}

αβn1{||xi − xj || ≥ R, i 6= j}
= β · 1{||xi − u|| ≥ R, i = 1, . . . , n}
= β · 1{∂u ∩ x = ∅}.

The density of a Markov point process can be factorized in a simple man-
ner as described in the famous Hammersley-Clifford theorem. An important
concept is here the cliques.

Definition 3. A pattern x ∈ S is called a clique if all members of x are
neighbours, i.e. u ∼ v for all u, v ∈ x. By convention, sets of 0 and 1 points
are cliques. The set of cliques is denoted C.

The Hammersley-Clifford theorem gives a factorization of a Markov den-
sity in terms of interactions which are only allowed between elements in
cliques.

Theorem 3. (Hammersley-Clifford) A density f defines a Markov point
process with respect to ∼ if and only if there exists a function ϕ : S → [0,∞)
such that ϕ(x) = 1 unless x ∈ C and such that

f(x) =
∏

y∈S:y⊆x

ϕ(y)

for all x ∈ S. The function ϕ is called the clique interaction function.

We will not prove the theorem here, but just mention that a lengthy
but rather elementary proof can be constructed, based on induction. The
Hammersley-Clifford theorem is important, first of all because it gives a way
of breaking up a high-dimensional joint distribution in managable clique
interactions that are easier to interpret and have lower dimension. It also
provides a natural way to construct parametric models for Markov point
processes.

Example 3. (The Strauss process) The Strauss process is the Markov

36

point process with interaction function

ϕ(x) =

α n(x) = 0
β n(x) = 1
γ n(x) = 2, x = {x1, x2}, x1 ∼ x2,

and ϕ(x) = 1 otherwise, where α, β, γ > 0. Using the Hammersley-Clifford
theorem, the density of the Strauss process becomes

f(x) = αβn(x)γs(x), x ∈ S, (33)

where s(x) is the number of neighbour pairs in x. If we condition on the
number of points in x, then we get the Strauss model described in Part 1,
Section 3.1. The density f is well-defined if

∞
∑

n=0

1

n!

∫

Sn

βnγs({x1,...,xn})dx1 · · · dxn <∞. (34)

It can be shown that (34) holds if γ ≤ 1 while for γ > 1, the sum in (34)
may be infinite. Thus, there does not in general exist a Strauss process for
γ > 1.

Example 4. (The area-interaction process) In this example, we consider
an alternative to the Strauss process which is called the area-interaction
process. Suppose that circular discs of radius R are allowed to overlap, and
we want the conditional intensity λ(u; x) to depend on the area added by
the new circular disc with centre u ∈ S. A natural choice for the intensity is
then

λ(u; x) = βγ−area(B(u,R)\Ux), u ∈ S,

where B(u,R) is a circular disc with centre u ∈ S and radius R, and Ux is a
short notation for ∪v∈xB(v, R). The model parameters satisfy β, γ > 0.

If γ < 1, λ(u; x) is large when the added area is large, resulting in regular
patterns. Similarly, for γ > 1, realizations tend to be clustered. For γ = 1,
we reobtain a Poisson process.

From the actual form of the conditional intensity, we can derive the form
of the corresponding density. For x = {x1, . . . , xn}, we get

f(x) = f(∅)λ(x1; ∅)λ(x2; {x1}) · · ·λ(xn; x\{xn})
= f(∅)βnγ−

Pn
i=1 area(B(xi,R)\Ux1,...,xi−1

)

= αβnγ−area(Ux), α = f(∅). (35)

It can be shown that (35) really defines a density, because

∞
∑

n=0

1

n!

∫

Sn

βnγ−area(U{x1,...,xn})dx1 . . . dxn <∞.

37

The process in (35) is Markov with respect to the relation

y1 ∼ y2 ⇔ ||y1 − y2|| < 2R.

To see this, note first that f(x) > 0 for all x ∈ S, so (M1) is satisfied. Next,
note that λ(u; x) depends only on u and the points in x closer than 2R to u.
So (M2) is satisfied.

38

References

1. Coles, S., Roberts, G. and Jarner. S. (2001) Computer Intensive Meth-
ods. Lecture Notes.

2. Jensen, J.L. (2001) Stochastic Simulations: Concepts and Applications.
Department of Theoretical Statistics, University of Aarhus.

39

