MATLAB ${ }^{\circledR}$

Primer

R2013a

MATLAB ${ }^{\circ}$

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB ${ }^{\circledR}$ Primer

© COPYRIGHT 1984-2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

December 1996	First printing	For MATLAB 5
May 1997	Second printing	For MATLAB 5.1
September 1998	Third printing	For MATLAB 5.3
September 2000	Fourth printing	Revised for MATLAB 6 (Release 12)
June 2001	Online only	Revised for MATLAB 6.1 (Release 12.1)
July 2002	Online only	Revised for MATLAB 6.5 (Release 13)
August 2002	Fifth printing	Revised for MATLAB 6.5
June 2004	Sixth printing	Revised for MATLAB 7.0 (Release 14)
October 2004	Online only	Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005	Online only	Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005	Seventh printing	Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005	Online only	Minor revision for MATLAB 7.1 (Release 14SP3)
March 2006	Online only	Minor revision for MATLAB 7.2 (Release 2006a)
September 2006	Eighth printing	Minor revision for MATLAB 7.3 (Release 2006b)
March 2007	Ninth printing	Minor revision for MATLAB 7.4 (Release 2007a)
September 2007	Tenth printing	Minor revision for MATLAB 7.5 (Release 2007b)
March 2008	Eleventh printing	Minor revision for MATLAB 7.6 (Release 2008a)
October 2008	Twelfth printing	Minor revision for MATLAB 7.7 (Release 2008b)
March 2009	Thirteenth printing	Minor revision for MATLAB 7.8 (Release 2009a)
September 2009	Fourteenth printing	Minor revision for MATLAB 7.9 (Release 2009b)
March 2010	Fifteenth printing	Minor revision for MATLAB 7.10 (Release 2010a)
September 2010	Sixteenth printing	Revised for MATLAB 7.11 (R2010b)
April 2011	Online only	Revised for MATLAB 7.12 (R2011a)
September 2011	Seventeenth printing	Revised for MATLAB 7.13 (R2011b)
March 2012	Eighteenth printing	Revised for Version 7.14 (R2012a)(Renamed from
		MATLAB Getting Started Guide)
September 2012	Nineteenth printing	Revised for Version 8.0 (R2012b)
March 2013	Twentieth printing	Revised for Version 8.1 (R2013a)

Quick Start

1

Product Description 1-2
Key Features 1-2
Desktop Basics 1-3
Matrices and Arrays 1-6
Array Creation 1-6
Matrix and Array Operations 1-7
Concatenation 1-9
Complex Numbers 1-10
Array Indexing 1-11
Workspace Variables 1-13
Character Strings 1-15
Calling Functions 1-17
2-D and 3-D Plots 1-18
Line Plots 1-18
3-D Plots 1-21
Subplots 1-22
Programming and Scripts 1-24
Sample Script 1-24
Loops and Conditional Statements 1-25
Script Locations 1-27
Help and Documentation 1-28

2

Matrices and Magic Squares 2-2
About Matrices 2-2
Entering Matrices 2-4
sum, transpose, and diag 2-5
The magic Function 2-7
Generating Matrices 2-8
Expressions 2-10
Variables 2-10
Numbers 2-11
Matrix Operators 2-12
Array Operators 2-13
Functions 2-15
Examples of Expressions 2-16
Entering Commands 2-18
The format Function 2-18
Suppressing Output 2-19
Entering Long Statements 2-20
Command Line Editing 2-20
Indexing 2-21
Subscripts 2-21
The Colon Operator 2-22
Concatenation 2-23
Deleting Rows and Columns 2-24
Scalar Expansion 2-25
Logical Subscripting 2-26
The find Function 2-27
Types of Arrays 2-28
Multidimensional Arrays 2-28
Cell Arrays 2-30
Characters and Text 2-32
Structures 2-35

Mathematics

3
Linear Algebra 3-2
Matrices in the MATLAB Environment 3-2
Systems of Linear Equations 3-11
Inverses and Determinants 3-22
Factorizations 3-26
Powers and Exponentials 3-34
Eigenvalues 3-37
Singular Values 3-40
Operations on Nonlinear Functions 3-44
Function Handles 3-44
Function Functions 3-44
Multivariate Data 3-47
Data Analysis 3-48
Introduction 3-48
Preprocessing Data 3-48
Summarizing Data 3-54
Visualizing Data 3-58
Modeling Data 3-71

Graphics

4

Basic Plotting Functions 4-2
Creating a Plot 4-2
Plotting Multiple Data Sets in One Graph 4-3
Specifying Line Styles and Colors 4-4
Plotting Lines and Markers 4-5
Graphing Imaginary and Complex Data 4-7
Adding Plots to an Existing Graph 4-8
Figure Windows 4-10
Displaying Multiple Plots in One Figure 4-10
Controlling the Axes 4-11
Adding Axis Labels and Titles 4-13
Saving Figures 4-14
Creating Mesh and Surface Plots 4-16
About Mesh and Surface Plots 4-16
Visualizing Functions of Two Variables 4-16
Plotting Image Data 4-23
About Plotting Image Data 4-23
Reading and Writing Images 4-24
Printing Graphics 4-25
Overview of Printing 4-25
Printing from the File Menu 4-25
Exporting the Figure to a Graphics File 4-26
Using the Print Command 4-26
Working with Handle Graphics Objects 4-28
Graphics Objects 4-28
Setting Object Properties 4-30
Functions for Working with Objects 4-33
Specifying Axes or Figures 4-34
Finding the Handles of Existing Objects 4-36
Programming
5
Control Flow 5-2
Conditional Control - if, else, switch 5-2
Loop Control - for, while, continue, break 5-5
Program Termination - return 5-7
Vectorization 5-8
Preallocation 5-8
Scripts and Functions 5-10
Overview 5-10
Scripts 5-11
Functions 5-12
Types of Functions 5-14
Global Variables 5-16
Command vs. Function Syntax 5-16
Index

Quick Start

- "Product Description" on page 1-2
- "Desktop Basics" on page 1-3
- "Matrices and Arrays" on page 1-6
- "Array Indexing" on page 1-11
- "Workspace Variables" on page 1-13
- "Character Strings" on page 1-15
- "Calling Functions" on page 1-17
- " 2 -D and 3-D Plots" on page 1-18
- "Programming and Scripts" on page 1-24
- "Help and Documentation" on page 1-28

Product Description

The Language of Technical Computing

MATLAB ${ }^{\circledR}$ is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java ${ }^{\circledR}$. You can use MATLAB for a range of applications, including signal processing and communications, image and video processing, control systems, test and measurement, computational finance, and computational biology. More than a million engineers and scientists in industry and academia use MATLAB, the language of technical computing.

Key Features

- High-level language for numerical computation, visualization, and application development
- Interactive environment for iterative exploration, design, and problem solving
- Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, numerical integration, and solving ordinary differential equations
- Built-in graphics for visualizing data and tools for creating custom plots
- Development tools for improving code quality and maintainability and maximizing performance
- Tools for building applications with custom graphical interfaces
- Functions for integrating MATLAB based algorithms with external applications and languages such as C, Java, .NET, and Microsoft ${ }^{\circledR}$ Excel ${ }^{\circledR}$

Desktop Basics

When you start MATLAB, the desktop appears in its default layout.

The desktop includes these panels:

- Current Folder - Access your files.
- Command Window - Enter commands at the command line, indicated by the prompt (>>).
- Workspace - Explore data that you create or import from files.
- Command History - View or rerun commands that you entered at the command line.

As you work in MATLAB, you issue commands that create variables and call functions. For example, create a variable named a by typing this statement at the command line:
$a=1$
MATLAB adds variable a to the workspace and displays the result in the Command Window.
a =

1

Create a few more variables.
b $=2$
b =

2
$c=a+b$

C =

3
$d=\cos (a)$
d =
0.5403

When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to store the results of your calculation.
$\sin (\mathrm{a})$
ans =
0.8415

If you end a statement with a semicolon, MATLAB performs the computation, but suppresses the display of output in the Command Window.
e = a*b;

You can recall previous commands by pressing the up- and down-arrow keys, \uparrow and \downarrow. Press the arrow keys either at an empty command line or after you type the first few characters of a command. For example, to recall the command $b=2$, type b, and then press the up-arrow key.

Matrices and Arrays

```
In this section...
"Array Creation" on page 1-6
"Matrix and Array Operations" on page 1-7
"Concatenation" on page 1-9
"Complex Numbers" on page 1-10
```

$M A T L A B$ is an abbreviation for "matrix laboratory." While other programming languages mostly work with numbers one at a time, MATLAB is designed to operate primarily on whole matrices and arrays.

All MATLAB variables are multidimensional arrays, no matter what type of data. A matrix is a two-dimensional array often used for linear algebra.

Array Creation

To create an array with four elements in a single row, separate the elements with either a comma (,) or a space.
a = [llll $\left.1 \begin{array}{lll}1 & 2 & 3\end{array}\right]$
returns
a $=$
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
This type of array is a row vector.
To create a matrix that has multiple rows, separate the rows with semicolons.

```
a = [1 2 3; 4 5 6; 7 8 10]
```

a $=$

1	2	3
4	5	6
7	8	10

Another way to create a matrix is to use a function, such as ones, zeros, or rand. For example, create a 5 -by- 1 column vector of zeros.

```
z = zeros(5,1)
```

z =
0
0
0
0
0

Matrix and Array Operations

MATLAB allows you to process all of the values in a matrix using a single arithmetic operator or function.

```
a + 10
ans =
    11 12 13
    14 15 16
    17 18 20
sin(a)
ans =
\begin{tabular}{rrr}
0.8415 & 0.9093 & 0.1411 \\
-0.7568 & -0.9589 & -0.2794 \\
0.6570 & 0.9894 & -0.5440
\end{tabular}
```

To transpose a matrix, use a single quote ('):

```
a'
ans =
\begin{tabular}{lll}
1 & 4 & 7
\end{tabular}
258
```

```
3 6
1 0
```

You can perform standard matrix multiplication, which computes the inner products between rows and columns, using the * operator. For example, confirm that a matrix times its inverse returns the identity matrix:

```
p = a*inv(a)
p =
\begin{tabular}{rrr}
1.0000 & 0 & -0.0000 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.0000
\end{tabular}
```

Notice that p is not a matrix of integer values. MATLAB stores numbers as floating-point values, and arithmetic operations are sensitive to small differences between the actual value and its floating-point representation. You can display more decimal digits using the format command:

```
format long
p = a*inv(a)
p =
    1.000000000000000
                                    0-0.000000000000000
                                    0 1.000000000000000 0
                                    0 0 0.9999999999999998
```

Reset the display to the shorter format using
format short
format affects only the display of numbers, not the way MATLAB computes or saves them.

To perform element-wise multiplication rather than matrix multiplication, use the . * operator:
p = a.*a
$p=$

1	4	9
16	25	36
49	64	100

The matrix operators for multiplication, division, and power each have a corresponding array operator that operates element-wise. For example, raise each element of a to the third power:
a. ${ }^{\wedge} 3$
ans =

1	8	27
64	125	216
343	512	1000

Concatenation

Concatenation is the process of joining arrays to make larger ones. In fact, you made your first array by concatenating its individual elements. The pair of square brackets [] is the concatenation operator.
$A=[a, a]$
$A=$

1	2	3	1	2	3
4	5	6	4	5	6
7	8	10	7	8	10

Concatenating arrays next to one another using commas is called horizontal concatenation. Each array must have the same number of rows. Similarly, when the arrays have the same number of columns, you can concatenate vertically using semicolons.
$A=[a ; a]$
$A=$

1	2	3
4	5	6
7	8	10
1	2	3
4	5	6
7	8	10

Complex Numbers

Complex numbers have both real and imaginary parts, where the imaginary unit is the square root of -1 .

```
sqrt(-1)
ans =
0 + 1.0000i
```

To represent the imaginary part of complex numbers, use either i or j .

```
c = [3+4i, 4+3j, -i, 10j]
c =
    3.0000 + 4.0000i 4.0000 + 3.0000i 0 - 1.0000i 0 +10.0000i
```


Array Indexing

Every variable in MATLAB is an array that can hold many numbers. When you want to access selected elements of an array, use indexing.

For example, consider the 4 -by- 4 magic square A :

```
A = magic(4)
A =
\begin{tabular}{rrrr}
16 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{tabular}
```

There are two ways to refer to a particular element in an array. The most common way is to specify row and column subscripts, such as

A $(4,2)$
ans =
14

Less common, but sometimes useful, is to use a single subscript that traverses down each column in order:

A(8)
ans =
14

Using a single subscript to refer to a particular element in an array is called linear indexing.

If you try to refer to elements outside an array on the right side of an assignment statement, MATLAB throws an error.
test $=A(4,5)$

Attempted to access $A(4,5)$; index out of bounds because size $(A)=[4,4]$.

However, on the left side of an assignment statement, you can specify elements outside the current dimensions. The size of the array increases to accommodate the newcomers.

```
A(4,5) = 17
A =
\begin{tabular}{rrrrr}
16 & 2 & 3 & 13 & 0 \\
5 & 11 & 10 & 8 & 0 \\
9 & 7 & 6 & 12 & 0 \\
4 & 14 & 15 & 1 & 17
\end{tabular}
```

To refer to multiple elements of an array, use the colon operator, which allows you to specify a range of the form start: end. For example, list the elements in the first three rows and the second column of A :

```
A(1:3,2)
ans =
    2
    1 1
    7
```

The colon alone, without start or end values, specifies all of the elements in that dimension. For example, select all the columns in the third row of A:

```
A(3,:)
ans =
    9
```

The colon operator also allows you to create an equally spaced vector of values using the more general form start:step: end.

B $=0: 10: 100$
B =

| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If you omit the middle step, as in start:end, MATLAB uses the default step value of 1 .

Workspace Variables

The workspace contains variables that you create within or import into MATLAB from data files or other programs. For example, these statements create variables A and B in the workspace.

```
A = magic(4);
B = rand(3,5,2);
```

You can view the contents of the workspace using whos.
whos

Name	Size	Bytes Class	Attributes	
A	4×4	128	double	
B	$3 \times 5 \times 2$	240	double	

The variables also appear in the Workspace pane on the desktop.

Workspace			
Name -	Value	Min	Max
A	<4x4 double>	1	16
B	<3×5 2 double>	0.0318	0.9597

Workspace variables do not persist after you exit MATLAB. Save your data for later use with the save command,
save myfile.mat
Saving preserves the workspace in your current working folder in a compressed file with a .mat extension, called a MAT-file.

To clear all the variables from the workspace, use the clear command.
Restore data from a MAT-file into the workspace using load.

```
load myfile.mat
```


Character Strings

A character string is a sequence of any number of characters enclosed in single quotes. You can assign a string to a variable.
myText = 'Hello, world';
If the text includes a single quote, use two single quotes within the definition.

```
otherText = 'You''re right'
otherText =
```

You're right
myText and otherText are arrays, like all MATLAB variables. Their class or data type is char, which is short for character.
whos myText

| Name | Size | Bytes Class | Attributes |
| :--- | ---: | ---: | :--- | ---: |
| myText | 1×12 | 24 char | |

You can concatenate strings with square brackets, just as you concatenate numeric arrays.

```
longText = [myText,' - ',otherText]
longText =
Hello, world - You're right
```

To convert numeric values to strings, use functions, such as num2str or int2str.
f = 71;
c = (f-32)/1.8;
tempText = ['Temperature is ',num2str(c),'C']
tempText $=$

Calling Functions

MATLAB provides a large number of functions that perform computational tasks. Functions are equivalent to subroutines or methods in other programming languages.

Suppose that your workspace includes variables A and B, such as
$A=\left[\begin{array}{ll}1 & 3\end{array}\right] ;$
$B=\left[\begin{array}{ll}10 & 6\end{array}\right]$;

To call a function, enclose its input arguments in parentheses:

```
max(A);
```

If there are multiple input arguments, separate them with commas:
$\max (\mathrm{A}, \mathrm{B})$;
Return output from a function by assigning it to a variable:

```
maxA = max(A);
```

When there are multiple output arguments, enclose them in square brackets:

```
[maxA,location] = max(A);
```

Enclose any character string inputs in single quotes:
disp('hello world');

To call a function that does not require any inputs and does not return any outputs, type only the function name:
clc

The clc function clears the Command Window.

2-D and 3-D Plots

In this section...

"Line Plots" on page 1-18
"3-D Plots" on page 1-21
"Subplots" on page 1-22

Line Plots

To create two-dimensional line plots, use the plot function. For example, plot the value of the sine function from 0 to $2 п$:

$$
\begin{aligned}
& x=0: p i / 100: 2^{*} \text { pi; } \\
& y=\sin (x) \\
& \operatorname{plot}(x, y)
\end{aligned}
$$

You can label the axes and add a title.

```
xlabel('x')
ylabel('sin(x)')
title('Plot of the Sine Function')
```


By adding a third input argument to the plot function, you can plot the same variables using a red dashed line.
plot(x,y,'r--')

The 'r--' string is a line specification. Each specification can include characters for the line color, style, and marker. A marker is a symbol that appears at each plotted data point, such as a +, o, or *. For example, 'g:*' requests a dotted green line with * markers.

Notice that the titles and labels that you defined for the first plot are no longer in the current figure window. By default, MATLAB clears the figure each time you call a plotting function, resetting the axes and other elements to prepare the new plot.

To add plots to an existing figure, use hold.

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
hold on
y2 = cos(x);
plot(x,y2,'r:')
legend('sin','cos')
```


Until you use hold off or close the window, all plots appear in the current figure window.

3-D Plots

Three-dimensional plots typically display a surface defined by a function in two variables, $z=f(x, y)$.

To evaluate z, first create a set of (x, y) points over the domain of the function using meshgrid.

```
[X,Y] = meshgrid(-2:.2:2);
Z = X .* exp(-X.^2 - Y.^2);
```

Then, create a surface plot.
$\operatorname{surf}(X, Y, Z)$

Both the surf function and its companion mesh display surfaces in three dimensions. surf displays both the connecting lines and the faces of the surface in color. mesh produces wireframe surfaces that color only the lines connecting the defining points.

Subplots

You can display multiple plots in different subregions of the same window using the subplot function.

For example, create four plots in a 2 -by- 2 grid within a figure window.

```
t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X); title('X');
subplot(2,2,2); mesh(Y); title('Y');
subplot(2,2,3); mesh(Z); title('Z');
subplot(2,2,4); mesh(X,Y,Z); title('X,Y,Z');
```


The first two inputs to the subplot function indicate the number of plots in each row and column. The third input specifies which plot is active.

Programming and Scripts

```
In this section...
"Sample Script" on page 1-24
"Loops and Conditional Statements" on page 1-25
"Script Locations" on page 1-27
```

The simplest type of MATLAB program is called a script. A script is a file with a .m extension that contains multiple sequential lines of MATLAB commands and function calls. You can run a script by typing its name at the command line.

Sample Script

To create a script, use the edit command,

```
edit plotrand
```

This opens a blank file named plotrand.m. Enter some code that plots a vector of random data:

```
n = 50;
r = rand(n,1);
plot(r)
```

Next, add code that draws a horizontal line on the plot at the mean:

```
m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')
```

Whenever you write code, it is a good practice to add comments that describe the code. Comments allow others to understand your code, and can refresh your memory when you return to it later. Add comments using the percent (\%) symbol.

```
% Generate random data from a uniform distribution
```

```
% and calculate the mean. Plot the data and the mean.
n = 50; % 50 data points
r = rand(n,1);
plot(r)
% Draw a line from (0,m) to (n,m)
m = mean(r);
hold on
plot([0,n],[m,m])
hold off
title('Mean of Random Uniform Data')
```

Save the file in the current folder. To run the script, type its name at the command line:
plotrand

You can also run scripts from the Editor by pressing the Run button, D.

Loops and Conditional Statements

Within a script, you can loop over sections of code and conditionally execute sections using the keywords for, while, if, and switch.

For example, create a script named calcmean.m that uses a for loop to calculate the mean of five random samples and the overall mean.

```
nsamples = 5;
npoints = 50;
for k = 1:nsamples
    currentData = rand(npoints,1);
    sampleMean(k) = mean(currentData);
end
overallMean = mean(sampleMean)
```

Now, modify the for loop so that you can view the results at each iteration. Display text in the Command Window that includes the current iteration number, and remove the semicolon from the assignment to sampleMean.

```
for k = 1:nsamples
    iterationString = ['Iteration #',int2str(k)];
    disp(iterationString)
    currentData = rand(npoints,1);
    sampleMean(k) = mean(currentData)
end
overallMean = mean(sampleMean)
When you run the script, it displays the intermediate results, and then calculates the overall mean.
calcmean
```

```
Iteration #1
```

Iteration \#1
sampleMean =
0.3988
Iteration \#2
sampleMean =
0.3988 0.4950
Iteration \#3
sampleMean =
0.3988 0.4950 0.5365
Iteration \#4
sampleMean =
0.3988 0.4950 0.5365 0.4870
Iteration \#5
sampleMean =

```
```

0.3988 0.4950 0.5365 0.4870 0.5501
overallMean =
0.4935

```

In the Editor, add conditional statements to the end of calcmean.m that display a different message depending on the value of overallMean.
```

if overallMean < . 49

```
    disp('Mean is less than expected')
elseif overallMean > .51
    disp('Mean is greater than expected')
else
    disp('Mean is within the expected range')
end

Run calcmean and verify that the correct message displays for the calculated overallMean. For example:
```

overallMean =

```
0.5178

Mean is greater than expected

\section*{Script Locations}

MATLAB looks for scripts and other files in certain places. To run a script, the file must be in the current folder or in a folder on the search path.

By default, the MATLAB folder that the MATLAB Installer creates is on the search path. If you want to store and run programs in another folder, add it to the search path. Select the folder in the Current Folder browser, right-click, and then select Add to Path.

\section*{Help and Documentation}

All MATLAB functions have supporting documentation that includes examples and describes the function inputs, outputs, and calling syntax. There are several ways to access this information from the command line:
- Open the function documentation in a separate window using the doc command.
doc mean
- Display function hints (the syntax portion of the function documentation) in the Command Window by pausing after you type the open parentheses for the function input arguments.
mean (
- View an abbreviated text version of the function documentation in the Command Window using the help command.
help mean

Access the complete product documentation by clicking the help icon

\section*{Language Fundamentals}
- "Matrices and Magic Squares" on page 2-2
- "Expressions" on page 2-10
- "Entering Commands" on page 2-18
- "Indexing" on page 2-21
- "Types of Arrays" on page 2-28

\section*{Matrices and Magic Squares}

\author{
In this section... \\ "About Matrices" on page 2-2 \\ "Entering Matrices" on page 2-4 \\ "sum, transpose, and diag" on page 2-5 \\ "The magic Function" on page 2-7 \\ "Generating Matrices" on page 2-8
}

\section*{About Matrices}

In the MATLAB environment, a matrix is a rectangular array of numbers. Special meaning is sometimes attached to 1 -by-1 matrices, which are scalars, and to matrices with only one row or column, which are vectors. MATLAB has other ways of storing both numeric and nonnumeric data, but in the beginning, it is usually best to think of everything as a matrix. The operations in MATLAB are designed to be as natural as possible. Where other programming languages work with numbers one at a time, MATLAB allows you to work with entire matrices quickly and easily. A good example matrix, used throughout this book, appears in the Renaissance engraving Melencolia I by the German artist and amateur mathematician Albrecht Dürer.


This image is filled with mathematical symbolism, and if you look carefully, you will see a matrix in the upper-right corner. This matrix is known as a magic square and was believed by many in Dürer's time to have genuinely magical properties. It does turn out to have some fascinating characteristics worth exploring.


\section*{Entering Matrices}

The best way for you to get started with MATLAB is to learn how to handle matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:
- Enter an explicit list of elements.
- Load matrices from external data files.
- Generate matrices using built-in functions.
- Create matrices with your own functions and save them in files.

Start by entering Dürer's matrix as a list of its elements. You only have to follow a few basic conventions:
- Separate the elements of a row with blanks or commas.
- Use a semicolon, ; , to indicate the end of each row.
- Surround the entire list of elements with square brackets, [ ].

To enter Dürer's matrix, simply type in the Command Window


MATLAB displays the matrix you just entered:
\(A=\)\begin{tabular}{rrrr} 
\\
& & & \\
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1
\end{tabular}

This matrix matches the numbers in the engraving. Once you have entered the matrix, it is automatically remembered in the MATLAB workspace. You can refer to it simply as A. Now that you have A in the workspace, take a look at what makes it so interesting. Why is it magic?

\section*{sum, transpose, and diag}

You are probably already aware that the special properties of a magic square have to do with the various ways of summing its elements. If you take the sum along any row or column, or along either of the two main diagonals, you will always get the same number. Let us verify that using MATLAB. The first statement to try is
sum (A)
MATLAB replies with
ans \(=\)
\(\begin{array}{llll}34 & 34 & 34 & 34\end{array}\)
When you do not specify an output variable, MATLAB uses the variable ans, short for answer, to store the results of a calculation. You have computed a row vector containing the sums of the columns of A. Each of the columns has the same sum, the magic sum, 34 .

How about the row sums? MATLAB has a preference for working with the columns of a matrix, so one way to get the row sums is to transpose the matrix, compute the column sums of the transpose, and then transpose the result.

MATLAB has two transpose operators. The apostrophe operator (for example, \(A^{\prime}\) ) performs a complex conjugate transposition. It flips a matrix about its main diagonal, and also changes the sign of the imaginary component of any complex elements of the matrix. The dot-apostrophe operator (A. '),
transposes without affecting the sign of complex elements. For matrices containing all real elements, the two operators return the same result.

So
\(A^{\prime}\)
produces
ans =
\(\begin{array}{llll}16 & 5 & 9 & 4\end{array}\)
\(\begin{array}{llll}3 & 10 & 6 & 15\end{array}\)
\(\begin{array}{llll}2 & 11 & 7 & 14\end{array}\)
\(\begin{array}{llll}13 & 8 & 12 & 1\end{array}\)
and
sum( \(\mathrm{A}^{\prime}\) )'
produces a column vector containing the row sums
ans =
34
34
34
34
For an additional way to sum the rows that avoids the double transpose use the dimension argument for the sum function:
sum (A,2)
produces
ans \(=\)
34
34
34
34
The sum of the elements on the main diagonal is obtained with the sum and the diag functions:
```

diag(A)
produces
ans =
16
10
7
1
and
sum(diag(A))
produces
ans =
34

```

The other diagonal, the so-called antidiagonal, is not so important mathematically, so MATLAB does not have a ready-made function for it. But a function originally intended for use in graphics, fliplr, flips a matrix from left to right:
```

sum(diag(fliplr(A)))
ans =
34

```

You have verified that the matrix in Dürer's engraving is indeed a magic square and, in the process, have sampled a few MATLAB matrix operations. The following sections continue to use this matrix to illustrate additional MATLAB capabilities.

\section*{The magic Function}

MATLAB actually has a built-in function that creates magic squares of almost any size. Not surprisingly, this function is named magic:
```

B = magic(4)
B =

16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1

```

This matrix is almost the same as the one in the Dürer engraving and has all the same "magic" properties; the only difference is that the two middle columns are exchanged.

To make this B into Dürer's A, swap the two middle columns:
\(A=B\left(:,\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]\right)\)

This subscript indicates that-for each of the rows of matrix B-reorder the elements in the order 1, 3, 2, 4. It produces:
```

A =

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

```

\section*{Generating Matrices}

MATLAB software provides four functions that generate basic matrices.
\begin{tabular}{ll} 
zeros & All zeros \\
ones & All ones \\
rand & Uniformly distributed random elements \\
randn & Normally distributed random elements
\end{tabular}

Here are some examples:
```

Z = zeros(2,4)
Z =

0	0	0	0
0	0	0	0

```
```

F = 5*ones (3,3)
F =
5 5 5
5 5 5
5 5 5
N = fix(10*rand(1,10))
N =
9 [llllllllll
R = randn(4,4)
R =

0.6353	0.0860	-0.3210	-1.2316
-0.6014	-2.0046	1.2366	1.0556
0.5512	-0.4931	-0.6313	-0.1132
-1.0998	0.4620	-2.3252	0.3792

```

\section*{Expressions}

\section*{In this section...}
"Variables" on page 2-10
"Numbers" on page 2-11
"Matrix Operators" on page 2-12
"Array Operators" on page 2-13
"Functions" on page 2-15
"Examples of Expressions" on page 2-16

\section*{Variables}

Like most other programming languages, the MATLAB language provides mathematical expressions, but unlike most programming languages, these expressions involve entire matrices.

MATLAB does not require any type declarations or dimension statements. When MATLAB encounters a new variable name, it automatically creates the variable and allocates the appropriate amount of storage. If the variable already exists, MATLAB changes its contents and, if necessary, allocates new storage. For example,
num_students \(=25\)
creates a 1-by-1 matrix named num_students and stores the value 25 in its single element. To view the matrix assigned to any variable, simply enter the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or underscores. MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first \(N\) characters of the name, (where \(N\) is the number returned by the function namelengthmax), and ignores the rest. Hence, it is important to make each variable name unique in the first N characters to enable MATLAB to distinguish variables.
```

N = namelengthmax
N =
63

```

The genvarname function can be useful in creating variable names that are both valid and unique.

\section*{Numbers}

MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten scale factor. Imaginary numbers use either i or \(j\) as a suffix. Some examples of legal numbers are
\begin{tabular}{lll}
3 & -99 & 0.0001 \\
9.6397238 & \(1.60210 \mathrm{e}-20\) & 6.02252 e 23 \\
1 i & -3.14159 j & 3 e 5 i
\end{tabular}

MATLAB stores all numbers internally using the long format specified by the IEEE \({ }^{\circledR}\) floating-point standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a finite range of roughly \(10^{-308}\) to \(10^{+308}\).

Numbers represented in the double format have a maximum precision of 52 bits. Any double requiring more bits than 52 loses some precision. For example, the following code shows two unequal values to be equal because they are both truncated:
```

x = 36028797018963968;
y = 36028797018963972;
x == y
ans =

```

1

Integers have available precisions of 8 -bit, 16 -bit, 32 -bit, and 64 -bit. Storing the same numbers as 64 -bit integers preserves precision:
```

x = uint64(36028797018963968);
y = uint64(36028797018963972);
x == y
ans =

```

MATLAB software stores the real and imaginary parts of a complex number. It handles the magnitude of the parts in different ways depending on the context. For instance, the sort function sorts based on magnitude and resolves ties by phase angle.
```

sort([3+4i, 4+3i])
ans =
4.0000 + 3.0000i 3.0000 + 4.0000i

```

This is because of the phase angle:
```

angle(3+4i)
ans =
0.9273
angle(4+3i)
ans =
0.6435

```

The "equal to" relational operator == requires both the real and imaginary parts to be equal. The other binary relational operators > <, >=, and <= ignore the imaginary part of the number and consider the real part only.

\section*{Matrix Operators}

Expressions use familiar arithmetic operators and precedence rules.
\begin{tabular}{ll}
+ & Addition \\
- & Subtraction \\
* & Multiplication \\
/ & Division \\
I & Left division \\
A & Power \\
' & Complex conjugate transpose \\
( ) & Specify evaluation order
\end{tabular}

\section*{Array Operators}

When they are taken away from the world of linear algebra, matrices become two-dimensional numeric arrays. Arithmetic operations on arrays are done element by element. This means that addition and subtraction are the same for arrays and matrices, but that multiplicative operations are different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array operations.

The list of operators includes
\begin{tabular}{ll}
+ & Addition \\
- & Subtraction \\
. * & Element-by-element multiplication \\
./ & Element-by-element division \\
.। & Element-by-element left division \\
.^ & Element-by-element power \\
. & Unconjugated array transpose
\end{tabular}

If the Dürer magic square is multiplied by itself with array multiplication

\section*{A. *A}
the result is an array containing the squares of the integers from 1 to 16 , in an unusual order:
```

ans =
256 9 4 169
25}1000121 6
81 36 49 144
16 225 196 1

```

\section*{Building Tables}

Array operations are useful for building tables. Suppose n is the column vector n = (0:9)';

Then
pows \(=\left[\begin{array}{lll}n & n . \wedge 2 & 2 . \wedge n\end{array}\right]\)
builds a table of squares and powers of 2 :
pows =
\begin{tabular}{rrr}
0 & 0 & 1 \\
1 & 1 & 2 \\
2 & 4 & 4 \\
3 & 9 & 8 \\
4 & 16 & 16 \\
5 & 25 & 32 \\
6 & 36 & 64 \\
7 & 49 & 128 \\
8 & 64 & 256 \\
9 & 81 & 512
\end{tabular}

The elementary math functions operate on arrays element by element. So
```

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

```
builds a table of logarithms.
```

logs =
1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394
1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

```

\section*{Functions}

MATLAB provides a large number of standard elementary mathematical functions, including abs, sqrt, exp, and sin. Taking the square root or logarithm of a negative number is not an error; the appropriate complex result is produced automatically. MATLAB also provides many more advanced mathematical functions, including Bessel and gamma functions. Most of these functions accept complex arguments. For a list of the elementary mathematical functions, type
help elfun
For a list of more advanced mathematical and matrix functions, type
```

help specfun

```
help elmat

Some of the functions, like sqrt and sin, are built in. Built-in functions are part of the MATLAB core so they are very efficient, but the computational details are not readily accessible. Other functions are implemented in the MATLAB programing language, so their computational details are accessible.

There are some differences between built-in functions and other functions. For example, for built-in functions, you cannot see the code. For other functions, you can see the code and even modify it if you want.

Several special functions provide values of useful constants.
\begin{tabular}{ll} 
pi & \(3.14159265 \ldots\) \\
i & Imaginary unit, \(\sqrt{-1}\) \\
j & Same as i \\
eps & Floating-point relative precision, \(\varepsilon=2^{-52}\) \\
realmin & Smallest floating-point number, \(2^{-1022}\) \\
realmax & Largest floating-point number, \((2-\varepsilon) 2^{1023}\)
\end{tabular}
\begin{tabular}{ll} 
Inf & Infinity \\
NaN & Not-a-number
\end{tabular}

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined mathematical expressions that overflow, that is, exceed realmax. Not-a-number is generated by trying to evaluate expressions like \(0 / 0\) or Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them with a new variable, such as
eps = 1.e-6
and then use that value in subsequent calculations. The original function can be restored with
clear eps

\section*{Examples of Expressions}

You have already seen several examples of MATLAB expressions. Here are a few more examples, and the resulting values:
```

rho = (1+sqrt(5))/2
rho =
1.6180
a = abs(3+4i)
a =
5
z = sqrt(besselk(4/3,rho-i))
z =
0.3730+ 0.3214i
huge = exp(log(realmax))
huge =
1.7977e+308
toobig = pi*huge

```
toobig = Inf

\section*{Entering Commands}

\section*{In this section...}
"The format Function" on page 2-18
"Suppressing Output" on page 2-19
"Entering Long Statements" on page 2-20
"Command Line Editing" on page 2-20

\section*{The format Function}

The format function controls the numeric format of the values displayed. The function affects only how numbers are displayed, not how MATLAB software computes or saves them. Here are the different formats, together with the resulting output produced from a vector x with components of different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.
```

x = [4/3 1.2345e-6]
format short
1.3333 0.0000
format short e
1.3333e+000 1.2345e-006
format short g
1.3333 1.2345e-006
format long
1.33333333333333 0.00000123450000

```
```

format long e
1.333333333333333e+000 1.234500000000000e-006
format long g
1.33333333333333 1.2345e-006
format bank
1.33 0.00
format rat
4/3 1/810045
format hex
3ff5555555555555 3eb4b6231abfd271

```

If the largest element of a matrix is larger than \(10^{3}\) or smaller than \(10^{-3}\), MATLAB applies a common scale factor for the short and long formats.

In addition to the format functions shown above
format compact
suppresses many of the blank lines that appear in the output. This lets you view more information on a screen or window. If you want more control over the output format, use the sprintf and fprintf functions.

\section*{Suppressing Output}

If you simply type a statement and press Return or Enter, MATLAB automatically displays the results on screen. However, if you end the line with a semicolon, MATLAB performs the computation, but does not display any output. This is particularly useful when you generate large matrices.
For example,
A = magic(100);

\section*{Entering Long Statements}

If a statement does not fit on one line, use an ellipsis (three periods), ..., followed by Return or Enter to indicate that the statement continues on the next line. For example,
```

s=1-1/2 + 1/3-1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

```

Blank spaces around the \(=,+\), and - signs are optional, but they improve readability.

\section*{Command Line Editing}

Various arrow and control keys on your keyboard allow you to recall, edit, and reuse statements you have typed earlier. For example, suppose you mistakenly enter
rho \(=(1+\operatorname{sqt}(5)) / 2\)
You have misspelled sqrt. MATLAB responds with
Undefined function 'sqt' for input arguments of type 'double'.
Instead of retyping the entire line, simply press the \(\uparrow\) key. The statement you typed is redisplayed. Use the \(\leftarrow\) key to move the cursor over and insert the missing \(r\). Repeated use of the \(\uparrow\) key recalls earlier lines. Typing a few characters, and then pressing the \(\uparrow\) key finds a previous line that begins with those characters. You can also copy previously executed statements from the Command History.

\section*{Indexing}

\section*{In this section...}
"Subscripts" on page 2-21
"The Colon Operator" on page 2-22
"Concatenation" on page 2-23
"Deleting Rows and Columns" on page 2-24
"Scalar Expansion" on page 2-25
"Logical Subscripting" on page 2-26
"The find Function" on page 2-27

\section*{Subscripts}

The element in row \(i\) and column \(j\) of \(A\) is denoted by \(A(i, j)\). For example, \(A(4,2)\) is the number in the fourth row and second column. For the magic square, \(A(4,2)\) is 15 . So to compute the sum of the elements in the fourth column of A, type
\(A(1,4)+A(2,4)+A(3,4)+A(4,4)\)
This subscript produces
```

ans =

```

34
but is not the most elegant way of summing a single column.
It is also possible to refer to the elements of a matrix with a single subscript, \(A(k)\). A single subscript is the usual way of referencing row and column vectors. However, it can also apply to a fully two-dimensional matrix, in which case the array is regarded as one long column vector formed from the columns of the original matrix. So, for the magic square, \(A(8)\) is another way of referring to the value 15 stored in \(A(4,2)\).

If you try to use the value of an element outside of the matrix, it is an error:
\[
t=A(4,5)
\]

Index exceeds matrix dimensions.
Conversely, if you store a value in an element outside of the matrix, the size increases to accommodate the newcomer:
```

X = A;
X(4,5) = 17
X =

16	3	2	13	0
5	10	11	8	0
9	6	7	12	0
4	15	14	1	17

```

\section*{The Colon Operator}

The colon, :, is one of the most important MATLAB operators. It occurs in several different forms. The expression

1:10
is a row vector containing the integers from 1 to 10 :
\begin{tabular}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{tabular}

To obtain nonunit spacing, specify an increment. For example, 100:-7:50
is
\(\begin{array}{llllllll}100 & 93 & 86 & 79 & 72 & 65 & 58 & 51\end{array}\)
and
0:pi/4:pi
is
\(\begin{array}{lllll}0 & 0.7854 & 1.5708 & 2.3562 & 3.1416\end{array}\)
Subscript expressions involving colons refer to portions of a matrix:
A(1:k,j)
is the first k elements of the j th column of A . Thus,
\(\operatorname{sum}(A(1: 4,4))\)
computes the sum of the fourth column. However, there is a better way to perform this computation. The colon by itself refers to all the elements in a row or column of a matrix and the keyword end refers to the last row or column. Thus,
\(\operatorname{sum}(A(:\), end \())\)
computes the sum of the elements in the last column of \(A\) :
ans =
34

Why is the magic sum for a 4 -by- 4 square equal to 34 ? If the integers from 1 to 16 are sorted into four groups with equal sums, that sum must be
sum(1:16)/4
which, of course, is
ans =
34

\section*{Concarenation}

Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your first matrix by concatenating its individual elements. The pair of square brackets, [ ], is the concatenation operator. For an example, start with the 4 -by- 4 magic square, \(A\), and form
\(B=\left[\begin{array}{lll}A & A+32 ; & A+48 \\ A+16\end{array}\right]\)

The result is an 8 -by- 8 matrix, obtained by joining the four submatrices:

B =
\begin{tabular}{rrrrrrrr}
16 & 3 & 2 & 13 & 48 & 35 & 34 & 45 \\
5 & 10 & 11 & 8 & 37 & 42 & 43 & 40 \\
9 & 6 & 7 & 12 & 41 & 38 & 39 & 44 \\
4 & 15 & 14 & 1 & 36 & 47 & 46 & 33 \\
64 & 51 & 50 & 61 & 32 & 19 & 18 & 29 \\
53 & 58 & 59 & 56 & 21 & 26 & 27 & 24 \\
57 & 54 & 55 & 60 & 25 & 22 & 23 & 28 \\
52 & 63 & 62 & 49 & 20 & 31 & 30 & 17
\end{tabular}

This matrix is halfway to being another magic square. Its elements are a rearrangement of the integers 1:64. Its column sums are the correct value for an 8 -by- 8 magic square:
sum (B)
ans \(=\)
\(\begin{array}{llllllll}260 & 260 & 260 & 260 & 260 & 260 & 260 & 260\end{array}\)
But its row sums, sum( \(B^{\prime}\) )', are not all the same. Further manipulation is necessary to make this a valid 8 -by- 8 magic square.

\section*{Deleting Rows and Columns}

You can delete rows and columns from a matrix using just a pair of square brackets. Start with

X = A;

Then, to delete the second column of X, use
```

X(:,2) = []

```

This changes X to
```

X =
16 2 13
5 11 8
9 7 7 12
4 14 1

```

If you delete a single element from a matrix, the result is not a matrix anymore. So, expressions like
\(X(1,2)=[]\)
result in an error. However, using a single subscript deletes a single element, or sequence of elements, and reshapes the remaining elements into a row vector. So
\(X(2: 2: 10)=[]\)
results in
\(\mathrm{X}=\)
\(\begin{array}{lllllll}16 & 9 & 2 & 7 & 13 & 12 & 1\end{array}\)

\section*{Scalar Expansion}

Matrices and scalars can be combined in several different ways. For example, a scalar is subtracted from a matrix by subtracting it from each element. The average value of the elements in our magic square is 8.5 , so
\(B=A-8.5\)
forms a matrix whose column sums are zero:
\(B=\)
\begin{tabular}{rrrr}
7.5 & -5.5 & -6.5 & 4.5 \\
-3.5 & 1.5 & 2.5 & -0.5 \\
0.5 & -2.5 & -1.5 & 3.5 \\
-4.5 & 6.5 & 5.5 & -7.5
\end{tabular}
sum (B)
ans \(=\)
\(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\)
With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For example,
\(B(1: 2,2: 3)=0\)
zeros out a portion of B :
\(B=\)
\begin{tabular}{rrrr}
7.5 & 0 & 0 & 4.5 \\
-3.5 & 0 & 0 & -0.5 \\
0.5 & -2.5 & -1.5 & 3.5 \\
-4.5 & 6.5 & 5.5 & -7.5
\end{tabular}

\section*{Logical Subscripting}

The logical vectors created from logical and relational operations can be used to reference subarrays. Suppose \(X\) is an ordinary matrix and \(L\) is a matrix of the same size that is the result of some logical operation. Then \(X(L)\) specifies the elements of \(X\) where the elements of \(L\) are nonzero.

This kind of subscripting can be done in one step by specifying the logical operation as the subscripting expression. Suppose you have the following set of data:

The NaN is a marker for a missing observation, such as a failure to respond to an item on a questionnaire. To remove the missing data with logical indexing, use isfinite( \(x\) ), which is true for all finite numerical values and false for NaN and Inf:
```

x = x(isfinite(x))
x =
2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

```

Now there is one observation, 5.1, which seems to be very different from the others. It is an outlier. The following statement removes outliers, in this case those elements more than three standard deviations from the mean:
```

x = x(abs(x-mean(x)) <= 3*std(x))
x =
2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

```

For another example, highlight the location of the prime numbers in Dürer's magic square by using logical indexing and scalar expansion to set the nonprimes to 0 . (See "The magic Function" on page 2-7.)

A(~isprime(A)) = 0

A =
\begin{tabular}{rrrr}
0 & 3 & 2 & 13 \\
5 & 0 & 11 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{tabular}

\section*{The find Function}

The find function determines the indices of array elements that meet a given logical condition. In its simplest form, find returns a column vector of indices. Transpose that vector to obtain a row vector of indices. For example, start again with Dürer's magic square. (See "The magic Function" on page 2-7.)
k = find(isprime(A))'
picks out the locations, using one-dimensional indexing, of the primes in the magic square:
```

k =
2

```

Display those primes, as a row vector in the order determined by k, with
```

A(k)
ans =
5

```

When you use k as a left-side index in an assignment statement, the matrix structure is preserved:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\(\mathrm{A}(\mathrm{k})=\mathrm{NaN}\)} \\
\hline \multicolumn{4}{|l|}{A \(=\)} \\
\hline 16 & NaN & NaN & NaN \\
\hline NaN & 10 & NaN & 8 \\
\hline 9 & 6 & NaN & 12 \\
\hline 4 & 15 & 14 & 1 \\
\hline
\end{tabular}

\section*{Types of Arrays}
```

In this section...
"Multidimensional Arrays" on page 2-28
"Cell Arrays" on page 2-30
"Characters and Text" on page 2-32
"Structures" on page 2-35

```

\section*{Multidimensional Arrays}

Multidimensional arrays in the MATLAB environment are arrays with more than two subscripts. One way of creating a multidimensional array is by calling zeros, ones, rand, or randn with more than two arguments. For example,
\(R=r a n d n(3,4,5)\);
creates a 3 -by- 4 -by- 5 array with a total of \(3 * 4 * 5=60\) normally distributed random elements.

A three-dimensional array might represent three-dimensional physical data, say the temperature in a room, sampled on a rectangular grid. Or it might represent a sequence of matrices, \(A^{(\mathrm{k})}\), or samples of a time-dependent matrix, \(A(t)\). In these latter cases, the \((i, j)\) th element of the \(k\) th matrix, or the \(t_{\mathrm{k}}\) th matrix, is denoted by \(A(i, j, k)\).

MATLAB and Dürer's versions of the magic square of order 4 differ by an interchange of two columns. Many different magic squares can be generated by interchanging columns. The statement
p = perms(1:4);
generates the \(4!=24\) permutations of \(1: 4\). The kth permutation is the row vector \(p(k,:)\). Then

A = magic(4);
M = zeros(4,4,24);
```

for k = 1:24
M(:,:,k) = A(:,p(k,:));
end

```
stores the sequence of 24 magic squares in a three-dimensional array, M. The size of \(M\) is
size(M)
ans =
\(\begin{array}{lll}4 & 4 & 24\end{array}\)


Note The order of the matrices shown in this illustration might differ from your results. The perms function always returns all permutations of the input vector, but the order of the permutations might be different for different MATLAB versions.

The statement
sum(M,d)
computes sums by varying the dth subscript. So
\(\operatorname{sum}(M, 1)\)
is a 1 -by- 4 -by- 24 array containing 24 copies of the row vector

\section*{\(\begin{array}{llll}34 & 34 & 34 & 34\end{array}\)}
and
\(\operatorname{sum}(M, 2)\)
is a 4-by-1-by-24 array containing 24 copies of the column vector
34
34
34
34
Finally,
\(S=\operatorname{sum}(M, 3)\)
adds the 24 matrices in the sequence. The result has size 4 -by- 4 -by- 1 , so it looks like a 4 -by- 4 array:

S =
\begin{tabular}{llll}
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204
\end{tabular}

\section*{Cell Arrays}

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell array of empty matrices can be created with the cell function. But, more often, cell arrays are created by enclosing a miscellaneous collection of things in curly braces, \(\}\). The curly braces are also used with subscripts to access the contents of various cells. For example, \(C=\{A \operatorname{sum}(A) \operatorname{prod}(\operatorname{prod}(A))\}\)
produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of column sums, and the product of all its elements. When C is displayed, you see

C =

This is because the first two cells are too large to print in this limited space, but the third cell contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of one of the cells, use subscripts in curly braces. For example, C\{1\} retrieves the magic square and \(C\{3\}\) is 16 !. Second, cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently change \(A\), nothing happens to C .

You can use three-dimensional arrays to store a sequence of matrices of the same size. Cell arrays can be used to store a sequence of matrices of different sizes. For example,
```

M = cell(8,1);
for n = 1:8
M{n} = magic(n);
end
M

```
produces a sequence of magic squares of different order:
```

M =
[1]
[2x2 double]
[3x3 double]
[4x4 double]
[5x5 double]
[6x6 double]
[7x7 double]
[8x8 double]

```


You can retrieve the 4 -by- 4 magic square matrix with
M 4 \}

\section*{Characters and Text}

Enter text into MATLAB using single quotes. For example,
s = 'Hello'
The result is not the same kind of numeric matrix or array you have been dealing with up to now. It is a 1 -by- 5 character array.

Internally, the characters are stored as numbers, but not in floating-point format. The statement
```

a = double(s)

```
converts the character array to a numeric matrix containing floating-point representations of the ASCII codes for each character. The result is

> a =
\(\begin{array}{lllll}72 & 101 & 108 & 108 & 111\end{array}\)

The statement
\(\mathrm{s}=\operatorname{char}(\mathrm{a})\)
reverses the conversion.
Converting numbers to characters makes it possible to investigate the various fonts available on your computer. The printable characters in the basic ASCII character set are represented by the integers 32:127. (The integers less than 32 represent nonprintable control characters.) These integers are arranged in an appropriate 6 -by- 16 array with

F = reshape \((32: 127,16,6)^{\prime}\);
The printable characters in the extended ASCII character set are represented by \(\mathrm{F}+128\). When these integers are interpreted as characters, the result depends on the font currently being used. Type the statements
```

char(F)
char(F+128)

```
and then vary the font being used for the Command Window. To change the font, on the Home tab, in the Environment section, click Preferences > Fonts. If you include tabs in lines of code, use a fixed-width font, such as Monospaced, to align the tab positions on different lines.

Concatenation with square brackets joins text variables together into larger strings. The statement
```

h = [s, ' world']

```
joins the strings horizontally and produces
```

h =
Hello world

```

The statement
```

v = [s; 'world']

```
joins the strings vertically and produces
```

v =
Hello
world

```

Notice that a blank has to be inserted before the ' w ' in h and that both words in \(v\) have to have the same length. The resulting arrays are both character arrays; h is 1 -by- 11 and \(v\) is 2 -by- 5 .

To manipulate a body of text containing lines of different lengths, you have two choices-a padded character array or a cell array of strings. When creating a character array, you must make each row of the array the same length. (Pad the ends of the shorter rows with spaces.) The char function does this padding for you. For example,
```

S = char('A','rolling','stone','gathers','momentum.')

```
produces a 5 -by- 9 character array:
\(S=\)
A
rolling
stone
gathers
momentum.
Alternatively, you can store the text in a cell array. For example,
C = \{'A';'rolling';'stone';'gathers';'momentum.'\}
creates a 5-by- 1 cell array that requires no padding because each row of the array can have a different length:

C =
'A'
'rolling'
'stone'
'gathers'
'momentum.'
You can convert a padded character array to a cell array of strings with
\(\mathrm{C}=\) cellstr(S)
and reverse the process with
S = char (C)

\section*{Structures}

Structures are multidimensional MATLAB arrays with elements accessed by textual field designators. For example,
S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'
creates a scalar structure with three fields:
```

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

```

Like everything else in the MATLAB environment, structures are arrays, so you can insert additional elements. In this case, each element of the array is a structure with several fields. The fields can be added one at a time,
```

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

```
or an entire element can be added with a single statement:
```

S(3) = struct('name','Jerry Garcia',...
'score',70,'grade','C')

```

Now the structure is large enough that only a summary is printed:
```

S =
1x3 struct array with fields:
name
score
grade

```

There are several ways to reassemble the various fields into other MATLAB arrays. They are mostly based on the notation of a comma-separated list. If you type
S.score
it is the same as typing
```

S(1).score, S(2).score, S(3).score

```
which is a comma-separated list.
If you enclose the expression that generates such a list within square brackets, MATLAB stores each item from the list in an array. In this example, MATLAB creates a numeric row vector containing the score field of each element of structure array S:
```

scores = [S.score]
scores =
83 91 70
avg_score = sum(scores)/length(scores)
avg_score =
81.3333

```

To create a character array from one of the text fields (name, for example), call the char function on the comma-separated list produced by S. name:
```

names = char(S.name)
names =
Ed Plum
Toni Miller
Jerry Garcia

```

Similarly, you can create a cell array from the name fields by enclosing the list-generating expression within curly braces:
```

names = {S.name}
names =
'Ed Plum' 'Toni Miller' 'Jerry Garcia'

```

To assign the fields of each element of a structure array to separate variables outside of the structure, specify each output to the left of the equals sign, enclosing them all within square brackets:
[N1 N2 N3] = S.name N1 =

Ed Plum
N2 =
Toni Miller
N3 =
Jerry Garcia

\section*{Dynamic Field Names}

The most common way to access the data in a structure is by specifying the name of the field that you want to reference. Another means of accessing structure data is to use dynamic field names. These names express the field as a variable expression that MATLAB evaluates at run time. The dot-parentheses syntax shown here makes expression a dynamic field name:
```

structName.(expression)

```

Index into this field using the standard MATLAB indexing syntax. For example, to evaluate expression into a field name and obtain the values of that field at columns 1 through 25 of row 7, use
structName.(expression)(7,1:25)
Dynamic Field Names Example. The avgscore function shown below computes an average test score, retrieving information from the testscores structure using dynamic field names:
```

function avg = avgscore(testscores, student, first, last)
for k = first:last
scores(k) = testscores.(student).week(k);

```
```

end
avg = sum(scores)/(last - first + 1);

```

You can run this function using different values for the dynamic field student. First, initialize the structure that contains scores for a 25 -week period:
```

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];
testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

```

Now run avgscore, supplying the students name fields for the testscores structure at run time using dynamic field names:
```

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =
85.2500
avgscore(testscores, 'William_King', 7, 22)
ans =
87.7500

```

\section*{Mathematics}
- "Linear Algebra" on page 3-2
- "Operations on Nonlinear Functions" on page 3-44
- "Multivariate Data" on page 3-47
- "Data Analysis" on page 3-48

\section*{Linear Algebra}

\author{
In this section... \\ "Matrices in the MATLAB Environment" on page 3-2 \\ "Systems of Linear Equations" on page 3-11 \\ "Inverses and Determinants" on page 3-22 \\ "Factorizations" on page 3-26 \\ "Powers and Exponentials" on page 3-34 \\ "Eigenvalues" on page 3-37 \\ "Singular Values" on page 3-40
}

\section*{Matrices in the MATLAB Environment}
- "Creating Matrices" on page 3-2
- "Adding and Subtracting Matrices" on page 3-4
- "Vector Products and Transpose" on page 3-5
- "Multiplying Matrices" on page 3-7
- "Identity Matrix" on page 3-9
- "Kronecker Tensor Product" on page 3-9
- "Vector and Matrix Norms" on page 3-10
- "Using Multithreaded Computation with Linear Algebra Functions" on page 3-11

\section*{Creating Matrices}

The MATLAB environment uses the term matrix to indicate a variable containing real or complex numbers arranged in a two-dimensional grid. An array is, more generally, a vector, matrix, or higher dimensional grid of numbers. All arrays in MATLAB are rectangular, in the sense that the component vectors along any dimension are all the same length.

Symbolic Math Toolbox \({ }^{\text {TM }}\) software extends the capabilities of MATLAB software to matrices of mathematical expressions.

MATLAB has dozens of functions that create different kinds of matrices. There are two functions you can use to create a pair of 3 -by- 3 example matrices for use throughout this chapter. The first example is symmetric:

A = pascal(3)
A \(=\)
\begin{tabular}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{tabular}

The second example is not symmetric:
\(B=\operatorname{magic}(3)\)
\(B=\)
\begin{tabular}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{tabular}

Another example is a 3 -by- 2 rectangular matrix of random integers:
\(C=\operatorname{fix}(10 *\) rand \((3,2))\)
\(C=\)
\(9 \quad 4\)
28
\(6 \quad 7\)

A column vector is an \(m\)-by- 1 matrix, a row vector is a 1-by- \(n\) matrix, and a scalar is a 1-by-1 matrix. The statements
\(u=[3 ; 1 ; 4]\)
\(v=\left[\begin{array}{lll}2 & 0 & -1\end{array}\right]\)
s = 7
produce a column vector, a row vector, and a scalar:
```

u =
3
1
4
v =
2 0 -1
s =
7

```

\section*{Adding and Subtracting Matrices}

Addition and subtraction of matrices is defined just as it is for arrays, element by element. Adding A to B, and then subtracting A from the result recovers B:
```

A = pascal(3);
B = magic(3);
X = A + B
x =
9 2
4 7 10
5 12 8
Y = X - A
Y =
$8 \quad 1 \quad 6$
3
4 9 2

```

Addition and subtraction require both matrices to have the same dimension, or one of them be a scalar. If the dimensions are incompatible, an error results:
```

C = fix(10*rand(3,2))
X = A + C
Error using plus
Matrix dimensions must agree.
w = v + s
w =
9 7 7 6

```

\section*{Vector Products and Transpose}

A row vector and a column vector of the same length can be multiplied in either order. The result is either a scalar, the inner product, or a matrix, the outer product :
```

u = [3; 1; 4];
v = [2 0 -1];
$\mathrm{x}=\mathrm{v}^{*} \mathrm{u}$
$x=$
2
$x=u^{*} v$
X =

6	0	-3
2	0	-1
8	0	-4

```

For real matrices, the transpose operation interchanges \(\alpha_{i j}\) and \(\alpha_{j i}\). MATLAB uses the apostrophe operator (') to perform a complex conjugate transpose, and uses the dot-apostrophe operator (.') to transpose without conjugation. For matrices containing all real elements, the two operators return the same result.

The example matrix A is symmetric, so A ' is equal to A . But, B is not symmetric:
```

B = magic(3);
X = B'
X =

```
\begin{tabular}{lll}
8 & 3 & 4 \\
1 & 5 & 9 \\
6 & 7 & 2
\end{tabular}

Transposition turns a row vector into a column vector:
```

x = v'
x =
2
0
-1

```

If \(x\) and \(y\) are both real column vectors, the product \(x * y\) is not defined, but the two products
\(x^{\prime *} y\)
and
\(y^{\prime *} x\)
are the same scalar. This quantity is used so frequently, it has three different names: inner product, scalar product, or dot product.

For a complex vector or matrix, \(z\), the quantity \(z\) ' not only transposes the vector or matrix, but also converts each complex element to its complex conjugate. That is, the sign of the imaginary part of each complex element changes. So if
```

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]
z =
1.0000 + 2.0000i 7.0000 - 3.0000i 3.0000 + 4.0000i
6.0000-2.0000i 0 + 9.0000i 4.0000 + 7.0000i

```
then
```

z'
ans =
1.0000 - 2.0000i 6.0000 + 2.0000i
7.0000 + 3.0000i 0 - 9.0000i
3.0000 - 4.0000i 4.0000 - 7.0000i

```

The unconjugated complex transpose, where the complex part of each element retains its sign, is denoted by z.':
Z.'
ans =
\begin{tabular}{rr}
\(1.0000+2.0000 i\) & \(6.0000-2.0000 i\) \\
\(7.0000-3.0000 i\) & \(0+9.0000 i\) \\
\(3.0000+4.0000 i\) & \(4.0000+7.0000 i\)
\end{tabular}

For complex vectors, the two scalar products \(x^{\prime *}\) y and \(y^{\prime \prime *} x\) are complex conjugates of each other, and the scalar product \(x^{\prime *} x\) of a complex vector with itself is real.

\section*{Multiplying Matrices}

Multiplication of matrices is defined in a way that reflects composition of the underlying linear transformations and allows compact representation of systems of simultaneous linear equations. The matrix product \(C=A B\) is defined when the column dimension of \(A\) is equal to the row dimension of \(B\), or when one of them is a scalar. If \(A\) is \(m\)-by- \(p\) and \(B\) is \(p\)-by- \(n\), their product \(C\) is \(m\)-by- \(n\). The product can actually be defined using MATLAB for loops, colon notation, and vector dot products:
```

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m
for j = 1:n
C(i,j) = A(i,:)*B(:,j);
end
end

```

MATLAB uses a single asterisk to denote matrix multiplication. The next two examples illustrate the fact that matrix multiplication is not commutative; \(A B\) is usually not equal to \(B A\) :
\(X=A * B\)
X =
\(15 \quad 15 \quad 15\)
\(26 \quad 38 \quad 26\)
\[
\begin{array}{rrr}
41 & 70 & 39 \\
Y= & B^{*} A & \\
Y= & & \\
& & \\
15 & 28 & 47 \\
15 & 34 & 60 \\
15 & 28 & 43
\end{array}
\]

A matrix can be multiplied on the right by a column vector and on the left by a row vector:
```

u = [3; 1; 4];

```
\(x=A * u\)
x =

8
17
30
```

v = [2 0 -1];
y = v*B
y =

12	-7	10

```

Rectangular matrix multiplications must satisfy the dimension compatibility conditions:
```

C = fix(10*rand(3,2));

```
\(\mathrm{X}=\mathrm{A}^{*} \mathrm{C}\)
X =
\(17 \quad 19\)
\(31 \quad 41\)
\(51 \quad 70\)

Y = C*A
Error using mtimes
Inner matrix dimensions must agree.

Anything can be multiplied by a scalar:
```

s = 7;
w = s*v
w =
14 0 -7

```

\section*{Identity Matrix}

Generally accepted mathematical notation uses the capital letter \(I\) to denote identity matrices, matrices of various sizes with ones on the main diagonal and zeros elsewhere. These matrices have the property that \(A I=A\) and \(I A=A\) whenever the dimensions are compatible. The original version of MATLAB could not use \(I\) for this purpose because it did not distinguish between uppercase and lowercase letters and \(i\) already served as a subscript and as the complex unit. So an English language pun was introduced. The function
```

eye(m,n)

```
returns an \(m\)-by- \(n\) rectangular identity matrix and eye( n ) returns an \(n\)-by- \(n\) square identity matrix.

\section*{Kronecker Tensor Product}

The Kronecker product, \(\mathrm{kron}(\mathrm{X}, \mathrm{Y})\), of two matrices is the larger matrix formed from all possible products of the elements of \(X\) with those of \(Y\). If \(X\) is \(m\)-by- \(n\) and Y is \(p\)-by- \(q\), then \(\operatorname{kron}(\mathrm{X}, \mathrm{Y})\) is \(m p\)-by- \(n q\). The elements are arranged in the following order:
```

[X(1,1)*Y X(1,2)*Y . . . X(1,n)*Y
X(m,1)*Y X(m,2)*Y . . . X(m,n)*Y]

```

The Kronecker product is often used with matrices of zeros and ones to build up repeated copies of small matrices. For example, if X is the 2 -by- 2 matrix
```

X =
$1 \quad 2$
34

```
and \(\mathrm{I}=\) eye \((2,2)\) is the 2 -by- 2 identity matrix, then the two matrices
kron(X, I)
and
kron(I, X)
are
\begin{tabular}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{tabular}
and
\begin{tabular}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 3 & 4
\end{tabular}

\section*{Vector and Matrix Norms}

The \(p\)-norm of a vector \(x\),
\[
\|x\|_{p}=\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}
\]
is computed by norm \((\mathrm{x}, \mathrm{p})\). This is defined by any value of \(p>1\), but the most common values of \(p\) are 1,2 , and \(\infty\). The default value is \(p=2\), which corresponds to Euclidean length:
```

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]
ans =
3.0000 2.2361 2.0000

```

The \(p\)-norm of a matrix \(A\),
\[
\|A\|_{p}=\max _{x} \frac{\|A x\|_{p}}{\|x\|_{p}},
\]
can be computed for \(p=1,2\), and \(\infty\) by norm (A, p). Again, the default value is \(p=2\) :
```

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]
ans =
19.0000 14.8015 13.0000

```

\section*{Using Multithreaded Computation with Linear Algebra Functions}

MATLAB software supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains than several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complex functions speed up more than simple functions.

The matrix multiply ( \(\mathrm{X} * \mathrm{Y}\) ) and matrix power ( \(\mathrm{X}^{\wedge} \mathrm{P}\) ) operators show significant increase in speed on large double-precision arrays (on order of 10,000 elements). The matrix analysis functions det, rcond, hess, and expm also show significant increase in speed on large double-precision arrays.

\section*{Systems of Linear Equations}
- "Computational Considerations" on page 3-12
- "The mldivide Algorithm" on page 3-13
- "General Solution" on page 3-14
- "Square Systems" on page 3-15
- "Overdetermined Systems" on page 3-17
- "Using Multithreaded Computation with Systems of Linear Equations" on page 3-20
- "Iterative Methods for Solving Systems of Linear Equations" on page 3-21

\section*{Computational Considerations}

One of the most important problems in technical computing is the solution of systems of simultaneous linear equations.

In matrix notation, the general problem takes the following form: Given two matrices \(A\) and \(B\), does there exist a unique matrix \(X\) so that \(A X=B\) or \(X A=B\) ?

It is instructive to consider a 1-by-1 example. For example, does the equation
\[
7 x=21
\]
have a unique solution?
The answer, of course, is yes. The equation has the unique solution \(x=3\). The solution is easily obtained by division:
\[
x=21 / 7=3 .
\]

The solution is not ordinarily obtained by computing the inverse of 7, that is \(7^{-1}=0.142857 \ldots\), and then multiplying \(7^{-1}\) by 21 . This would be more work and, if \(7^{-1}\) is represented to a finite number of digits, less accurate. Similar considerations apply to sets of linear equations with more than one unknown; the MATLAB software solves such equations without computing the inverse of the matrix.

Although it is not standard mathematical notation, MATLAB uses the division terminology familiar in the scalar case to describe the solution of a general system of simultaneous equations. The two division symbols, slash,/, and backslash, \\, correspond to the two MATLAB functions mldivide and
mrdivide. mldivide and mrdivide are used for the two situations where the unknown matrix appears on the left or right of the coefficient matrix:
\[
\begin{array}{ll}
\mathrm{X}=\mathrm{B} / \mathrm{A} & \text { Denotes the solution to the matrix equation } \\
& X A=B . \\
\mathrm{X}=\mathrm{A} \backslash \mathrm{~B} & \text { Denotes the solution to the matrix equation } \\
& A X=B .
\end{array}
\]

Think of "dividing" both sides of the equation \(A X=B\) or \(X A=B\) by \(A\). The coefficient matrix A is always in the "denominator."

The dimension compatibility conditions for \(X=A \backslash B\) require the two matrices \(A\) and \(B\) to have the same number of rows. The solution \(X\) then has the same number of columns as \(B\) and its row dimension is equal to the column dimension of \(A\). For \(X=B / A\), the roles of rows and columns are interchanged.

In practice, linear equations of the form \(A X=B\) occur more frequently than those of the form \(X A=B\). Consequently, the backslash is used far more frequently than the slash. The remainder of this section concentrates on the backslash operator; the corresponding properties of the slash operator can be inferred from the identity:
\((B / A)^{\prime}=\left(A^{\prime} \backslash B^{\prime}\right)\)
The coefficient matrix A need not be square. If A is \(m\)-by- \(n\), there are three cases:
\[
\begin{array}{ll}
\mathrm{m}=\mathrm{n} & \text { Square system. Seek an exact solution. } \\
\mathrm{m}>\mathrm{n} & \begin{array}{l}
\text { Overdetermined system. Find a least-squares } \\
\text { solution. }
\end{array} \\
\mathrm{m}<\mathrm{n} & \begin{array}{l}
\text { Underdetermined system. Find a basic solution } \\
\text { with at most } m \text { nonzero components. }
\end{array}
\end{array}
\]

\section*{The mldivide Algorithm}

The mldivide operator employs different algorithms to handle different kinds of coefficient matrices. The various cases are diagnosed automatically by examining the coefficient matrix.

Permutations of Triangular Matrices. mldivide checks for triangularity by testing for zero elements. If a matrix A is triangular, MATLAB software uses a substitution to compute the solution vector \(x\). If \(A\) is a permutation of a triangular matrix, MATLAB software uses a permuted substitution algorithm.

Square Matrices. If A is symmetric and has real, positive diagonal elements, MATLAB attempts a Cholesky factorization. If the Cholesky factorization fails, MATLAB performs a symmetric, indefinite factorization. If A is upper Hessenberg, MATLAB uses Gaussian elimination to reduce the system to a triangular matrix. If A is square but is neither permuted triangular, symmetric and positive definite, or Hessenberg, then MATLAB performs a general triangular factorization using LU factorization with partial pivoting (see the lu reference page).

Rectangular Matrices. If A is rectangular, mldivide returns a least-squares solution. MATLAB solves overdetermined systems with QR factorization (see the \(q r\) reference page). For an underdetermined system, MATLAB returns the solution with the maximum number of zero elements.

The mldivide function reference page contains a more detailed description of the algorithm.

\section*{General Solution}

The general solution to a system of linear equations \(A X=b\) describes all possible solutions. You can find the general solution by:

1 Solving the corresponding homogeneous system \(A X=0\). Do this using the null command, by typing null(A). This returns a basis for the solution space to \(A X=0\). Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the nonhomogeneous system \(A X=b\).
You can then write any solution to \(A X=b\) as the sum of the particular solution to \(A X=b\), from step 2 , plus a linear combination of the basis vectors from step 1.

The rest of this section describes how to use MATLAB to find a particular solution to \(A X=b\), as in step 2 .

\section*{Square Systems}

The most common situation involves a square coefficient matrix A and a single right-side column vector \(b\).

Nonsingular Coefficient Matrix. If the matrix A is nonsingular, the solution, \(x=A \backslash b\), is then the same size as \(b\). For example:
```

A = pascal(3);
u = [3; 1; 4];
x = A\u
x =
10
-12
5

```

It can be confirmed that \(A * x\) is exactly equal to \(u\).
If \(A\) and \(B\) are square and the same size, \(X=A \backslash B\) is also that size:
\(B=\operatorname{magic}(3)\);
\(X=A \backslash B\)
X =
\begin{tabular}{rrr}
19 & -3 & -1 \\
-17 & 4 & 13 \\
6 & 0 & -6
\end{tabular}

It can be confirmed that \(A * X\) is exactly equal to \(B\).
Both of these examples have exact, integer solutions. This is because the coefficient matrix was chosen to be pascal(3), which has a determinant equal to 1 .

Singular Coefficient Matrix. A square matrix \(A\) is singular if it does not have linearly independent columns. If \(A\) is singular, the solution to \(A X=B\) either does not exist, or is not unique. The backslash operator, \(A \backslash B\), issues a warning if \(A\) is nearly singular and raises an error condition if it detects exact singularity.

If \(A\) is singular and \(A X=b\) has a solution, you can find a particular solution that is not unique, by typing
\[
P=\operatorname{pinv}(A) * b
\]

P is a pseudoinverse of \(A\). If \(A X=b\) does not have an exact solution, pinv (A) returns a least-squares solution.

For example:
```

A = [[1 3 % 7
-1 4 4
1 10 18]

```
is singular, as you can verify by typing
\(\operatorname{det}(\mathrm{A})\)
ans \(=\)
0

Note For information about using pinv to solve systems with rectangular coefficient matrices, see "Pseudoinverses" on page 3-24.

\section*{Exact Solutions}

For \(\mathrm{b}=[5 ; 2 ; 12]\), the equation \(A X=b\) has an exact solution, given by
```

pinv(A)*b

```
ans \(=\)
0.3850
-0.1103
0.7066

Verify that pinv (A)*b is an exact solution by typing
A*pinv(A)*b
ans =
5.0000
2.0000
12.0000

\section*{Least-Squares Solutions}

However, if \(b=[3 ; 6 ; 0], A X=b\) does not have an exact solution. In this case, pinv (A)*b returns a least-squares solution. If you type

A*pinv (A)*b
ans =
\(-1.0000\)
4.0000
2.0000
you do not get back the original vector \(b\).
You can determine whether \(A X=b\) has an exact solution by finding the row reduced echelon form of the augmented matrix [A b]. To do so for this example, enter
rref([A b])
ans =
\(\begin{array}{rrrr}1.0000 & 0 & 2.2857 & 0 \\ 0 & 1.0000 & 1.5714 & 0 \\ 0 & 0 & 0 & 1.0000\end{array}\)
Since the bottom row contains all zeros except for the last entry, the equation does not have a solution. In this case, pinv (A) returns a least-squares solution.

\section*{Overdetermined Systems}

Overdetermined systems of simultaneous linear equations are often encountered in various kinds of curve fitting to experimental data. Here is a hypothetical example. A quantity \(y\) is measured at several different values of time, \(t\), to produce the following observations:
\begin{tabular}{ll}
\(\boldsymbol{t}\) & \(\boldsymbol{y}\) \\
0.0 & 0.82 \\
0.3 & 0.72 \\
0.8 & 0.63 \\
1.1 & 0.60 \\
1.6 & 0.55 \\
2.3 & 0.50
\end{tabular}

Enter the data into MATLAB with the statements
```

t = [l0 .3 . . % 1.1 1.6 2.3]';
y = [. 82 .72 . 63 . 60 .55 .50]';

```

Try modeling the data with a decaying exponential function:
\[
y(t)=c_{1}+c_{2} e^{-t} .
\]

The preceding equation says that the vector y should be approximated by a linear combination of two other vectors, one the constant vector containing all ones and the other the vector with components \(e^{-t}\). The unknown coefficients, \(c_{1}\) and \(c_{2}\), can be computed by doing a least-squares fit, which minimizes the sum of the squares of the deviations of the data from the model. There are six equations in two unknowns, represented by the 6 -by- 2 matrix:
\(E=\left[\begin{array}{ll} \\ E= & \\ & \\ & 1.0000 \\ 1.0000 & 1.0000 \\ 1.0000 & 0.7408 \\ 1.0000 & 0.4493 \\ 1.0000 & 0.3329 \\ & 1.0000 \\ & 0.1003\end{array}\right.\)

Use the backslash operator to get the least-squares solution:
\(c=E \backslash y\)
c \(=\)
\[
\begin{aligned}
& 0.4760 \\
& 0.3413
\end{aligned}
\]

In other words, the least-squares fit to the data is
\[
y(t)=0.4760+0.3413 e^{-t} .
\]

The following statements evaluate the model at regularly spaced increments in \(t\), and then plot the result, together with the original data:
```

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

```
\(E * C\) is not exactly equal to \(y\), but the difference might well be less than measurement errors in the original data.


A rectangular matrix \(A\) is rank deficient if it does not have linearly independent columns. If \(A\) is rank deficient, the least-squares solution to \(A X\) \(=B\) is not unique. The backslash operator, \(A \backslash B\), issues a warning if \(A\) is rank
deficient and produces a least-squares solution if the system has no solution and a basic solution if the system has infinitely many solutions.

Use the format command to display the solution in rational format. The particular solution is obtained with
```

format rat
p = R\b
p =
0
-3/7
O
29/7

```

One of the nonzero components is \(p(2)\) because \(R(:, 2)\) is the column of \(R\) with largest norm. The other nonzero component is \(p(4)\) because \(R(:, 4)\) dominates after \(R(:, 2)\) is eliminated.

The complete solution to the underdetermined system can be characterized by adding an arbitrary vector from the null space, which can be found using the null function with an option requesting a rational basis:
```

Z = null(R,'r')
Z =
-1/2 -7/6
-1/2 1/2
1 0
0 1

```

It can be confirmed that \(R * Z\) is zero and that any vector x where
\(x=p+Z^{*} q\)
for an arbitrary vector \(q\) satisfies \(R^{*} x=b\).

\section*{Using Multithreaded Computation with Systems of Linear Equations}

MATLAB software supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions
automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains than several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complex functions speed up more than simple functions.
inv, lscov, linsolve, and mldivide show significant increase in speed on large double-precision arrays (on order of 10,000 elements or more) when multithreading is enabled.

\section*{Iterative Methods for Solving Systems of Linear Equations}

If the coefficient matrix A is large and sparse, factorization methods are generally not efficient. Iterative methods generate a series of approximate solutions. MATLAB provides several iterative methods to handle large, sparse input matrices.
```

pcg
Preconditioned conjugate gradients method. This method is appropriate
for Hermitian positive definite coefficient matrix A.
bicg
BiConjugate Gradients Method
bicgstab
BiConjugate Gradients Stabilized Method
bicgstabl
BiCGStab(l) Method

```
cgs
Conjugate Gradients Squared Method
gmres
Generalized Minimum Residual Method
lsqr
LSQR Method
minres
Minimum Residual Method. This method is appropriate for Hermitian coefficient matrix A.
qmr
Quasi-Minimal Residual Method
symmlq
Symmetric LQ Method
tfqmr
Transpose-Free QMR Method

\section*{Inverses and Determinants}
- "Introduction" on page 3-22
- "Pseudoinverses" on page 3-24

\section*{Introduction}

If \(A\) is square and nonsingular, the equations \(A X=I\) and \(X A=I\) have the same solution, \(X\). This solution is called the inverse of \(A\), is denoted by \(A^{-1}\), and is computed by the function inv.

The determinant of a matrix is useful in theoretical considerations and some types of symbolic computation, but its scaling and round-off error properties make it far less satisfactory for numeric computation. Nevertheless, the function det computes the determinant of a square matrix:

A = pascal(3)
A =
\begin{tabular}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{tabular}
```

 1 3 6
 d = det(A)
X = inv(A)
d =
1
X =
3 -3 1
-3 5 -2
1 -2 1

```

Again, because A is symmetric, has integer elements, and has determinant equal to one, so does its inverse. However,
```

B = magic(3)

```
B =
\begin{tabular}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{tabular}
\(d=\operatorname{det}(B)\)
\(X=\operatorname{inv}(B)\)
d =
        -360
X =
\begin{tabular}{rrr}
0.1472 & -0.1444 & 0.0639 \\
-0.0611 & 0.0222 & 0.1056 \\
-0.0194 & 0.1889 & -0.1028
\end{tabular}

Closer examination of the elements of \(X\), or use of format rat, would reveal that they are integers divided by 360 .

If \(A\) is square and nonsingular, then, without round-off error, \(X=\operatorname{inv}(A) * B\) is theoretically the same as \(X=A \backslash B\) and \(Y=B * \operatorname{inv}(A)\) is theoretically the same as \(Y=B / A\). But the computations involving the backslash and slash operators are preferable because they require less computer time, less memory, and have better error-detection properties.

\section*{Pseudoinverses}

Rectangular matrices do not have inverses or determinants. At least one of the equations \(A X=I\) and \(X A=I\) does not have a solution. A partial replacement for the inverse is provided by the Moore-Penrose pseudoinverse, which is computed by the pinv function:
```

format short
C = fix(10*gallery('uniformdata',[3 2],0));
X = pinv(C)
X =
0.1159 -0.0729 0.0171
-0.0534 0.1152 0.0418

```

The matrix
\(Q=X * C\)
Q =
\begin{tabular}{ll}
1.0000 & 0.0000 \\
0.0000 & 1.0000
\end{tabular}
is the 2-by- 2 identity, but the matrix
\begin{tabular}{lrr}
\(P=\) & \(C * X\) \\
\(P=\) & & \\
& \\
& \\
& -0.8293 & -0.1958 \\
& 0.3213 & 0.3213 \\
& 0.3213 & 0.3685 \\
& & 0.3952
\end{tabular}
is not the 3-by-3 identity. However, \(P\) acts like an identity on a portion of the space in the sense that \(P\) is symmetric, \(P * C\) is equal to \(C\), and \(X * P\) is equal to \(X\).

Solving a Rank-Deficient System. If A is \(m\)-by- \(n\) with \(m>n\) and full rank \(n\), each of the three statements
```

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

```
theoretically computes the same least-squares solution \(x\), although the backslash operator does it faster.

However, if A does not have full rank, the solution to the least-squares problem is not unique. There are many vectors \(x\) that minimize
norm ( \(A * x-b)\)
The solution computed by \(\mathrm{x}=\mathrm{A} \backslash \mathrm{b}\) is a basic solution; it has at most \(r\) nonzero components, where \(r\) is the rank of A . The solution computed by \(\mathrm{x}=\) \(\operatorname{pinv}(A) * b\) is the minimal norm solution because it minimizes norm ( \(x\) ). An attempt to compute a solution with \(x=\operatorname{inv}\left(A^{\prime *} A\right) A^{\prime} * b\) fails because \(A^{\prime *} A\) is singular.

Here is an example that illustrates the various solutions:
```

A = [llll
4 5 6
7 8 9
10 11 12];

```
does not have full rank. Its second column is the average of the first and third columns. If
b \(=A(:, 2)\)
is the second column, then an obvious solution to \(A^{*} x=b\) is \(x=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\) '. But none of the approaches computes that x. The backslash operator gives
```

x = A\b
Warning: Rank deficient, rank = 2, tol = 1.4594e-014.
x =
0.5000
0
0.5000

```

This solution has two nonzero components. The pseudoinverse approach gives
```

y = pinv(A)*b
y =

```
0.3333
0.3333
0.3333

There is no warning about rank deficiency. But norm(y) \(=0.5774\) is less than \(\operatorname{norm}(x)=0.7071\). Finally,
```

z = inv(A'*A)*A'*b

```
fails completely:
```

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 9.868649e-018.
z =
-0.8594
1.3438
-0.6875

```

\section*{Factorizations}
- "Introduction" on page 3-26
- "Cholesky Factorization" on page 3-26
- "LU Factorization" on page 3-28
- "QR Factorization" on page 3-30
- "Using Multithreaded Computation for Factorization" on page 3-33

\section*{Introduction}

All three of the matrix factorizations discussed in this section make use of triangular matrices, where all the elements either above or below the diagonal are zero. Systems of linear equations involving triangular matrices are easily and quickly solved using either forward or back substitution.

\section*{Cholesky Factorization}

The Cholesky factorization expresses a symmetric matrix as the product of a triangular matrix and its transpose
\[
A=R^{\prime} R
\]
where \(R\) is an upper triangular matrix.
Not all symmetric matrices can be factored in this way; the matrices that have such a factorization are said to be positive definite. This implies that all the diagonal elements of \(A\) are positive and that the offdiagonal elements are "not too big." The Pascal matrices provide an interesting example. Throughout this chapter, the example matrix A has been the 3 -by- 3 Pascal matrix. Temporarily switch to the 6-by-6:
\(A=\operatorname{pascal}(6)\)
\(A=\)
\begin{tabular}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 6 & 10 & 15 & 21 \\
1 & 4 & 10 & 20 & 35 & 56 \\
1 & 5 & 15 & 35 & 70 & 126 \\
1 & 6 & 21 & 56 & 126 & 252
\end{tabular}

The elements of A are binomial coefficients. Each element is the sum of its north and west neighbors. The Cholesky factorization is
\begin{tabular}{lllllr}
\(R=\operatorname{chol}(A)\) \\
\(R=\) & & & & \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 3 & 6 & 10 \\
0 & 0 & 0 & 1 & 4 & 10 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 1
\end{tabular}

The elements are again binomial coefficients. The fact that \(R^{\prime *} R\) is equal to \(A\) demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any complex matrix that has a Cholesky factorization satisfies \(A^{\prime}=A\) and is said to be Hermitian positive definite.

The Cholesky factorization allows the linear system
\[
A x=b
\]
to be replaced by
\[
R^{\prime} R x=b
\]

Because the backslash operator recognizes triangular systems, this can be solved in the MATLAB environment quickly with
\[
x=R \backslash\left(R^{\prime} \backslash b\right)
\]

If A is \(n\)-by- \(n\), the computational complexity of \(\operatorname{chol}(\mathrm{A})\) is \(\mathrm{O}\left(n^{3}\right)\), but the complexity of the subsequent backslash solutions is only \(\mathrm{O}\left(n^{2}\right)\).

\section*{LU Factorization}

LU factorization, or Gaussian elimination, expresses any square matrix \(A\) as the product of a permutation of a lower triangular matrix and an upper triangular matrix
\[
A=L U
\]
where \(L\) is a permutation of a lower triangular matrix with ones on its diagonal and \(U\) is an upper triangular matrix.

The permutations are necessary for both theoretical and computational reasons. The matrix
\[
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\]
cannot be expressed as the product of triangular matrices without interchanging its two rows. Although the matrix
\[
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 0
\end{array}\right]
\]
can be expressed as the product of triangular matrices, when \(\varepsilon\) is small, the elements in the factors are large and magnify errors, so even though the permutations are not strictly necessary, they are desirable. Partial pivoting ensures that the elements of \(L\) are bounded by one in magnitude and that the elements of \(U\) are not much larger than those of \(A\).

For example:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\([L, U]=\operatorname{lu}(\mathrm{B})\)} \\
\hline L = & & \\
\hline 1.0000 & 0 & 0 \\
\hline 0.3750 & 0.5441 & 1.0000 \\
\hline 0.5000 & 1.0000 & 0 \\
\hline \multicolumn{3}{|l|}{\(\mathrm{U}=\)} \\
\hline 8.0000 & 1.0000 & 6.0000 \\
\hline 0 & 8.5000 & -1.0000 \\
\hline 0 & 0 & 5.2941 \\
\hline
\end{tabular}

The LU factorization of A allows the linear system
\(A^{*} x=b\)
to be solved quickly with
\(x=U \backslash(L \backslash b)\)
Determinants and inverses are computed from the LU factorization using
```

det(A) = det(L)*det(U)

```
and
\(\operatorname{inv}(\mathrm{A})=\operatorname{inv}(\mathrm{U}) * \operatorname{inv}(\mathrm{~L})\)

You can also compute the determinants using \(\operatorname{det}(A)=\operatorname{prod}(\operatorname{diag}(U))\), though the signs of the determinants might be reversed.

\section*{QR Factorization}

An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix whose columns all have unit length and are perpendicular to each other. If \(Q\) is orthogonal, then
\[
Q^{\prime} Q=1 .
\]

The simplest orthogonal matrices are two-dimensional coordinate rotations:
\[
\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
\]

For complex matrices, the corresponding term is unitary. Orthogonal and unitary matrices are desirable for numerical computation because they preserve length, preserve angles, and do not magnify errors.

The orthogonal, or QR , factorization expresses any rectangular matrix as the product of an orthogonal or unitary matrix and an upper triangular matrix. A column permutation might also be involved:
\[
A=Q R
\]
or
\[
A P=Q R,
\]
where \(Q\) is orthogonal or unitary, \(R\) is upper triangular, and \(P\) is a permutation.

There are four variants of the QR factorization-full or economy size, and with or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows than columns, that is \(m\)-by- \(n\) with \(m>n\). The full-size QR factorization produces a square, \(m\)-by- \(m\) orthogonal \(Q\) and a rectangular \(m\)-by- \(n\) upper triangular \(R\) :
```

C=gallery('uniformdata',[5 4], 0);

```
\([Q, R]=\operatorname{qr}(C)\)
\(Q=\)
\begin{tabular}{rrrrr}
0.6191 & 0.1406 & -0.1899 & -0.5058 & 0.5522 \\
0.1506 & 0.4084 & 0.5034 & 0.5974 & 0.4475 \\
0.3954 & -0.5564 & 0.6869 & -0.1478 & -0.2008 \\
0.3167 & 0.6676 & 0.1351 & -0.1729 & -0.6370 \\
0.5808 & -0.2410 & -0.4695 & 0.5792 & -0.2207
\end{tabular}
\(\mathrm{R}=\)
\begin{tabular}{rrrr}
1.5346 & 1.0663 & 1.2010 & 1.4036 \\
0 & 0.7245 & 0.3474 & -0.0126 \\
0 & 0 & 0.9320 & 0.6596 \\
0 & 0 & 0 & 0.6648 \\
0 & 0 & 0 & 0
\end{tabular}

In many cases, the last \(m-n\) columns of \(Q\) are not needed because they are multiplied by the zeros in the bottom portion of \(R\). So the economy-size QR factorization produces a rectangular, \(m\)-by- \(n Q\) with orthonormal columns and a square \(n\)-by- \(n\) upper triangular \(R\). For the 5 -by- 4 example, this is not much of a saving, but for larger, highly rectangular matrices, the savings in both time and memory can be quite important:
```

$[Q, R]=\operatorname{qr}(C, 0)$

```
\(Q=\)
\begin{tabular}{rrrr}
0.6191 & 0.1406 & -0.1899 & -0.5058 \\
0.1506 & 0.4084 & 0.5034 & 0.5974 \\
0.3954 & -0.5564 & 0.6869 & -0.1478 \\
0.3167 & 0.6676 & 0.1351 & -0.1729 \\
0.5808 & -0.2410 & -0.4695 & 0.5792
\end{tabular}
R =
\begin{tabular}{rrrr}
1.5346 & 1.0663 & 1.2010 & 1.4036 \\
0 & 0.7245 & 0.3474 & -0.0126 \\
0 & 0 & 0.9320 & 0.6596
\end{tabular}
\[
\begin{array}{llll}
0 & 0 & 0 & 0.6648
\end{array}
\]

In contrast to the LU factorization, the QR factorization does not require any pivoting or permutations. But an optional column permutation, triggered by the presence of a third output argument, is useful for detecting singularity or rank deficiency. At each step of the factorization, the column of the remaining unfactored matrix with largest norm is used as the basis for that step. This ensures that the diagonal elements of \(R\) occur in decreasing order and that any linear dependence among the columns is almost certainly be revealed by examining these elements. For the small example given here, the second column of C has a larger norm than the first, so the two columns are exchanged:
```

[Q,R,P] = qr(C)
Q =
-0.3522 0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163 0.1241 0.7777
R =
-11.3578 -8.2762
0 7.2460
0
P =
0
0

```

When the economy-size and column permutations are combined, the third output argument is a permutation vector, rather than a permutation matrix:
```

[Q,R,p] = qr(C,0)
Q =
-0.3522 0.8398
-0.7044 -0.5285
-0.6163 0.1241
R =
-11.3578 -8.2762

```
```

 0 7.2460
 p =
2 1

```

The QR factorization transforms an overdetermined linear system into an equivalent triangular system. The expression
norm (A*x - b)
equals
norm(Q*R*x - b)
Multiplication by orthogonal matrices preserves the Euclidean norm, so this expression is also equal to
norm ( \(\left.\mathrm{R}^{*} \mathrm{x}-\mathrm{y}\right)\)
where \(\mathrm{y}=Q^{\prime}\) *b. Since the last \(m-n\) rows of \(R\) are zero, this expression breaks into two pieces:
```

norm(R(1:n,1:n)*x - y(1:n))

```
and
```

norm(y(n+1:m))

```

When A has full rank, it is possible to solve for x so that the first of these expressions is zero. Then the second expression gives the norm of the residual. When A does not have full rank, the triangular structure of R makes it possible to find a basic solution to the least-squares problem.

\section*{Using Multithreaded Computation for Factorization}

MATLAB software supports multithreaded computation for a number of linear algebra and element-wise numerical functions. These functions automatically execute on multiple threads. For a function or expression to execute faster on multiple CPUs, a number of conditions must be true:

1 The function performs operations that easily partition into sections that execute concurrently. These sections must be able to execute with little communication between processes. They should require few sequential operations.

2 The data size is large enough so that any advantages of concurrent execution outweigh the time required to partition the data and manage separate execution threads. For example, most functions speed up only when the array contains several thousand elements or more.

3 The operation is not memory-bound; processing time is not dominated by memory access time. As a general rule, complex functions speed up more than simple functions.
lu and qr show significant increase in speed on large double-precision arrays (on order of 10,000 elements).

\section*{Powers and Exponentials}
- "Positive Integer Powers" on page 3-34
- "Inverse and Fractional Powers" on page 3-35
- "Element-by-Element Powers" on page 3-35
- "Exponentials" on page 3-35

\section*{Positive Integer Powers}

If \(A\) is a square matrix and \(p\) is a positive integer, \(A^{\wedge} p\) effectively multiplies A by itself p-1 times. For example:
\(A=\left[\begin{array}{lllllll}1 & 1 & 1 ; 1 & 2 & 3 ; 1 & 3 & 6\end{array}\right]\)
\(A=\)
\begin{tabular}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6 \\
\(\mathrm{~A}^{\wedge} 2\) & &
\end{tabular}
X =
\(3 \quad 6 \quad 10\)
\(6 \quad 14 \quad 25\)
\(10 \quad 25 \quad 46\)

\section*{Inverse and Fractional Powers}

If \(A\) is square and nonsingular, \(A^{\wedge}(-p)\) effectively multiplies inv ( \(A\) ) by itself p-1 times:
\(Y=A^{\wedge}(-3)\)
\(Y=\)
\begin{tabular}{rrr}
145.0000 & -207.0000 & 81.0000 \\
-207.0000 & 298.0000 & -117.0000 \\
81.0000 & -117.0000 & 46.0000
\end{tabular}

Fractional powers, like \(A^{\wedge}(2 / 3)\), are also permitted; the results depend upon the distribution of the eigenvalues of the matrix.

\section*{Element-by-Element Powers}

The .^ operator produces element-by-element powers. For example:
```

X = A.^2

```
```

A =
$1 \quad 1 \quad 1$
$1 \quad 4 \quad 9$
1 9 36

```

\section*{Exponentials}

The function
sqrtm(A)
computes \(A^{\wedge}(1 / 2)\) by a more accurate algorithm. The \(m\) in sqrtm distinguishes this function from sqrt(A), which, like A.^(1/2), does its job element by element.

A system of linear, constant coefficient, ordinary differential equations can be written
\[
d x / d t=A x
\]
where \(x=x(t)\) is a vector of functions of \(t\) and \(A\) is a matrix independent of \(t\). The solution can be expressed in terms of the matrix exponential:
\[
x(t)=e^{t A} x(0) .
\]

The function
expm (A)
computes the matrix exponential. An example is provided by the 3 -by- 3 coefficient matrix
\(A=\)\begin{tabular}{rrr} 
\\
0 & & \\
6 & 2 & -1 \\
-5 & 20 & -10
\end{tabular}
and the initial condition, \(x(0)\)
\(x 0=\)
1
1
1
The matrix exponential is used to compute the solution, \(x(t)\), to the differential equation at 101 points on the interval \(0 \leq t \leq 1\) with
```

X = [];
for t = 0:.01:1
X = [X expm(t*A)*x0];
end

```

A three-dimensional phase plane plot obtained with
plot3(X(1,:),X(2,:),X(3,:), - - ' \()\)
shows the solution spiraling in towards the origin. This behavior is related to the eigenvalues of the coefficient matrix, which are discussed in the next section.


\section*{Eigenvalues}
- "Eigenvalue Decomposition" on page 3-37
- "Multiple Eigenvalues" on page 3-39
- "Schur Decomposition" on page 3-40

\section*{Eigenvalue Decomposition}

An eigenvalue and eigenvector of a square matrix \(A\) are, respectively, a scalar \(\lambda\) and a nonzero vector \(v\) that satisfy
\[
A v=\lambda v .
\]

With the eigenvalues on the diagonal of a diagonal matrix \(\Lambda\) and the corresponding eigenvectors forming the columns of a matrix \(V\), you have
\[
A V=V \Lambda
\]

If \(V\) is nonsingular, this becomes the eigenvalue decomposition
\[
A=V \Lambda V^{-1}
\]

A good example is provided by the coefficient matrix of the ordinary differential equation in the previous section:
\(A=\)\begin{tabular}{rrr} 
& & \\
0 & -6 & -1 \\
6 & 2 & -16 \\
-5 & 20 & -10
\end{tabular}

The statement
lambda = eig(A)
produces a column vector containing the eigenvalues. For this matrix, the eigenvalues are complex:
lambda \(=\)
-3. 0710
\(-2.4645+17.6008 i\)
-2.4645-17.6008i
The real part of each of the eigenvalues is negative, so \(e^{\lambda t}\) approaches zero as \(t\) increases. The nonzero imaginary part of two of the eigenvalues, \(\pm \omega\), contributes the oscillatory component, \(\sin (\omega t)\), to the solution of the differential equation.

With two output arguments, eig computes the eigenvectors and stores the eigenvalues in a diagonal matrix:
```

[$\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})$
V =
-0.8326 0.2003-0.1394i $0.2003+0.1394 i$
$-0.3553-0.2110-0.6447 i-0.2110+0.6447 i$
$-0.4248 \quad-0.6930 \quad-0.6930$

```

D \(=\)
\begin{tabular}{rcc}
-3.0710 & 0 & 0 \\
0 & \(-2.4645+17.6008 i\) & 0 \\
0 & 0 & \(-2.4645-17.6008 i\)
\end{tabular}

The first eigenvector is real and the other two vectors are complex conjugates of each other. All three vectors are normalized to have Euclidean length, norm ( \(\mathrm{v}, 2\) ), equal to one.

The matrix \(V * D * i n v(V)\), which can be written more succinctly as \(V * D / V\), is within round-off error of \(A\). And, inv \((V) * A * V\), or \(V \backslash A * V\), is within round-off error of \(D\).

\section*{Multiple Eigenvalues}

Some matrices do not have an eigenvector decomposition. These matrices are not diagonalizable. For example:
\(A=\left[\begin{array}{rrr}6 & 12 & 19 \\ -9 & -20 & -33 \\ 4 & 9 & 15\end{array}\right]\)

For this matrix
[ \(\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})\)
produces
\(\mathrm{V}=\)
\begin{tabular}{rrr}
-0.4741 & -0.4082 & -0.4082 \\
0.8127 & 0.8165 & 0.8165 \\
-0.3386 & -0.4082 & -0.4082
\end{tabular}

D =
\begin{tabular}{rrr}
-1.0000 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.0000
\end{tabular}

There is a double eigenvalue at \(\lambda=1\). The second and third columns of \(V\) are the same. For this matrix, a full set of linearly independent eigenvectors does not exist.

\section*{Schur Decomposition}

The MATLAB advanced matrix computations do not require eigenvalue decompositions. They are based, instead, on the Schur decomposition
\[
A=U S U^{T}
\]
where \(U\) is an orthogonal matrix and \(S\) is a block upper triangular matrix with 1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed by the diagonal elements and blocks of \(S\), while the columns of \(U\) provide a basis with much better numerical properties than a set of eigenvectors. The Schur decomposition of this defective example is
```

[U,S] = schur(A)

$U=$		
-0.4741	0.6648	0.5774
0.8127	0.0782	0.5774
-0.3386	-0.7430	0.5774
$S=$		
-1.0000	20.7846	-44.6948
0	1.0000	-0.6096
0	0	1.0000

```

The double eigenvalue is contained in the lower 2 -by- 2 block of S .

Note If A is complex, schur returns the complex Schur form, which is upper triangular with the eigenvalues of \(A\) on the diagonal.

\section*{Singular Values}

A singular value and corresponding singular vectors of a rectangular matrix \(A\) are, respectively, a scalar \(\sigma\) and a pair of vectors \(u\) and \(v\) that satisfy
\[
\begin{aligned}
& A v=\sigma u \\
& A^{T} u=\sigma v .
\end{aligned}
\]

With the singular values on the diagonal of a diagonal matrix \(\Sigma\) and the corresponding singular vectors forming the columns of two orthogonal matrices \(U\) and \(V\), you have
\[
\begin{aligned}
& A V=U \Sigma \\
& A^{T} U=V \Sigma .
\end{aligned}
\]

Since \(U\) and \(V\) are orthogonal, this becomes the singular value decomposition
\[
A=U \Sigma V^{T} .
\]

The full singular value decomposition of an \(m\)-by- \(n\) matrix involves an \(m\)-by- \(m\) \(U\), an \(m\)-by- \(n \Sigma\), and an \(n\)-by- \(n V\). In other words, \(U\) and \(V\) are both square and \(\Sigma\) is the same size as \(A\). If \(A\) has many more rows than columns, the resulting \(U\) can be quite large, but most of its columns are multiplied by zeros in \(\Sigma\). In this situation, the economy sized decomposition saves both time and storage by producing an \(m\)-by- \(n U\), an \(n\)-by- \(n \Sigma\) and the same \(V\).

The eigenvalue decomposition is the appropriate tool for analyzing a matrix when it represents a mapping from a vector space into itself, as it does for an ordinary differential equation. However, the singular value decomposition is the appropriate tool for analyzing a mapping from one vector space into another vector space, possibly with a different dimension. Most systems of simultaneous linear equations fall into this second category.

If \(A\) is square, symmetric, and positive definite, then its eigenvalue and singular value decompositions are the same. But, as \(A\) departs from symmetry and positive definiteness, the difference between the two decompositions increases. In particular, the singular value decomposition of a real matrix is always real, but the eigenvalue decomposition of a real, nonsymmetric matrix might be complex.

For the example matrix
\(A=\)\begin{tabular}{ll} 
& \\
& \\
& \\
6 & 4 \\
& 8
\end{tabular}

27
the full singular value decomposition is
```

[U,S,V] = svd(A)
U =

0.6105	-0.7174	0.3355
0.6646	0.2336	-0.7098
0.4308	0.6563	0.6194

S =
14.9359 0
0 5.1883
0
V =
0.6925 -0.7214
0.7214 0.6925

```

You can verify that U*S*V ' is equal to A to within round-off error. For this small problem, the economy size decomposition is only slightly smaller:
\([\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)\)
U =
\(0.6105-0.7174\)
\(0.6646 \quad 0.2336\)
\(0.4308 \quad 0.6563\)

S =
\begin{tabular}{rr}
14.9359 & 0 \\
0 & 5.1883
\end{tabular}
```

V =
0.6925 -0.7214
0.7214 0.6925

```

Again, \(U * S^{*} V^{\prime}\) is equal to \(A\) to within round-off error.

\section*{Operations on Nonlinear Functions}

\author{
In this section... \\ "Function Handles" on page 3-44 \\ "Function Functions" on page 3-44
}

\section*{Function Handles}

You can create a handle to any MATLAB function, and then use that handle as a means of referencing the function. A function handle is typically passed in an argument list to other functions, which can then execute, or evaluate, the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the function name. The following example creates a function handle for the sin function and assigns it to the variable fhandle:
```

fhandle = @sin;

```

You can call a function by means of its handle in the same way that you would call the function using its name. The syntax is
```

fhandle(arg1, arg2, ...);

```

The function plot_fhandle, shown below, receives a function handle and data, generates \(y\)-axis data using the function handle, and plots it:
```

function plot_fhandle(fhandle, data)
plot(data, fhandle(data))

```

When you call plot_fhandle with a handle to the sin function and the argument shown below, the resulting evaluation produces a sine wave plot:
```

plot_fhandle(@sin, -pi:0.01:pi)

```

\section*{Function Functions}

A class of functions called "function functions" works with nonlinear functions of a scalar variable. That is, one function works on another function. The function functions include
- Zero finding
- Optimization
- Quadrature
- Ordinary differential equations

MATLAB represents the nonlinear function by the file that defines it. For example, here is a simplified version of the function humps from the matlab/demos folder:
```

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

```

Evaluate this function at a set of points in the interval \(0 \leq x \leq 1\) with
```

x = 0:.002:1;
y = humps(x);

```

Then plot the function with
plot (x,y)


The graph shows that the function has a local minimum near \(x=0.6\). The function fminsearch finds the minimizer, the value of \(x\) where the function takes on this minimum. The first argument to fminsearch is a function handle to the function being minimized and the second argument is a rough guess at the location of the minimum:
```

p = fminsearch(@humps,.5)
p =
0.6370

```

To evaluate the function at the minimizer,
humps ( p )
ans \(=\)
    11.2528

Numerical analysts use the terms quadrature and integration to distinguish between numerical approximation of definite integrals and numerical integration of ordinary differential equations. MATLAB quadrature routines are quad and quadl. The statement

Q = quadl(@humps,0,1)
computes the area under the curve in the graph and produces
```

Q =
29.8583

```

Finally, the graph shows that the function is never zero on this interval. So, if you search for a zero with
```

z = fzero(@humps,.5)

```
you will find one outside the interval
\[
\begin{aligned}
z= \\
-0.1316
\end{aligned}
\]

\section*{Multivariate Data}

MATLAB uses column-oriented analysis for multivariate statistical data. Each column in a data set represents a variable and each row an observation. The ( \(i, j\) ) th element is the ith observation of the \(j\) th variable.

As an example, consider a data set with three variables:
- Heart rate
- Weight
- Hours of exercise per week

For five observations, the resulting array might look like
\(D=\left[\begin{array}{lll}{[72} & 134 & 3.2 \\ 81 & 201 & 3.5 \\ 69 & 156 & 7.1 \\ 82 & 148 & 2.4 \\ 75 & 170 & 1.2\end{array}\right]\)

The first row contains the heart rate, weight, and exercise hours for patient 1, the second row contains the data for patient 2 , and so on. Now you can apply many MATLAB data analysis functions to this data set. For example, to obtain the mean and standard deviation of each column, use
```

mu = mean(D), sigma = std(D)
mu =
75.8 161.8 3.48
sigma =
5.6303
25.499
2.2107

```

For a list of the data analysis functions available in MATLAB, type
help datafun

If you have access to the Statistics Toolbox \({ }^{\text {TM }}\) software, type
```

help stats

```

\section*{Data Analysis}

\section*{Introduction}

Every data analysis has some standard components:
- Preprocessing - Consider outliers and missing values, and smooth data to identify possible models.
- Summarizing - Compute basic statistics to describe the overall location, scale, and shape of the data.
- Visualizing - Plot data to identify patterns and trends.
- Modeling - Give data trends fuller descriptions, suitable for predicting new values.

Data analysis moves among these components with two basic goals in mind:
1 Describe the patterns in the data with simple models that lead to accurate predictions.

2 Understand the relationships among variables that lead to the model.
This section explains how to carry out a basic data analysis in the MATLAB environment.

\section*{Preprocessing Data}
- "Overview" on page 3-49
- "Loading the Data" on page 3-49
- "Missing Data" on page 3-49
- "Outliers" on page 3-50
- "Smoothing and Filtering" on page 3-51

\section*{Overview}

Begin a data analysis by loading data into suitable MATLAB container variables and sorting out the "good" data from the "bad." This is a preliminary step that assures meaningful conclusions in subsequent parts of the analysis.

Note This section begins a data analysis that is continued in "Summarizing Data" on page 3-54, "Visualizing Data" on page 3-58, and "Modeling Data" on page 3-71.

\section*{Loading the Data}

Begin by loading the data in count.dat:
load count.dat

The 24 -by- 3 array count contains hourly traffic counts (the rows) at three intersections (the columns) for a single day.

\section*{Missing Data}

The MATLAB NaN (Not a Number) value is normally used to represent missing data. NaN values allow variables with missing data to maintain their structure-in this case, 24 -by- 1 vectors with consistent indexing across all three intersections.

Check the data at the third intersection for NaN values using the isnan function:
```

c3 = count(:,3); % Data at intersection 3
c3NaNCount = sum(isnan(c3))
c3NaNCount =
0

```
isnan returns a logical vector the same size as c3, with entries indicating the presence (1) or absence (0) of NaN values for each of the 24 elements in the data. In this case, the logical values sum to 0 , so there are no NaN values in the data.

NaN values are introduced into the data in the section on "Outliers" on page 3-50.

\section*{Outliers}

Outliers are data values that are dramatically different from patterns in the rest of the data. They might be due to measurement error, or they might represent significant features in the data. Identifying outliers, and deciding what to do with them, depends on an understanding of the data and its source.

One common method for identifying outliers is to look for values more than a certain number of standard deviations \(\sigma\) from the mean \(\mu\). The following code plots a histogram of the data at the third intersection together with lines at \(\mu\) and \(\mu+n \sigma\), for \(n=1,2\) :
```

bin_counts = hist(c3); % Histogram bin counts

```
\(\mathrm{N}=\max (\) bin_counts) ; \% Maximum bin count
mu3 \(=\) mean(c3); \% Data mean
sigma3 \(=\) std(c3); \% Data standard deviation
hist(c3) \% Plot histogram
hold on
plot([mu3 mu3],[0 N],'r','LineWidth', 2) \% Mean
\(\mathrm{X}=\) repmat (mu3+(1:2)*sigma3,2,1);
\(Y=\operatorname{repmat}([0 ; N], 1,2)\);
plot (X,Y,'g','LineWidth',2) \% Standard deviations
legend('Data','Mean','Stds')
hold off


The plot shows that some of the data are more than two standard deviations above the mean. If you identify these data as errors (not features), replace them with NaN values as follows:
```

outliers = (c3 - mu3) > 2*sigma3;
c3m = c3; % Copy c3 to c3m
c3m(outliers) = NaN; % Add NaN values

```

\section*{Smoothing and Filtering}

A time-series plot of the data at the third intersection (with the outlier removed in "Outliers" on page 3-50) results in the following plot:
```

plot(c3m,'o-')
hold on

```


The NaN value at hour 20 appears as a gap in the plot. This handling of NaN values is typical of MATLAB plotting functions.

Noisy data shows random variations about expected values. You might want to smooth the data to reveal its main features before building a model. Two basic assumptions underlie smoothing:
- The relationship between the predictor (time) and the response (traffic volume) is smooth.
- The smoothing algorithm results in values that are better estimates of expected values because the noise has been reduced.

Apply a simple moving average smoother to the data using the MATLAB convn function:
```

span = 3; % Size of the averaging window

```
```

window = ones(span,1)/span;
smoothed_c3m = convn(c3m,window,'same');
h = plot(smoothed_c3m,'ro-');
legend('Data','Smoothed Data')

```


The extent of the smoothing is controlled with the variable span. The averaging calculation returns NaN values whenever the smoothing window includes the NaN value in the data, thus increasing the size of the gap in the smoothed data.

The filter function is also used for smoothing data:
```

smoothed2_c3m = filter(window,1,c3m);

```
delete(h)
plot(smoothed2_c3m,'ro-');


The smoothed data are shifted from the previous plot. convn with the 'same' parameter returns the central part of the convolution, the same length as the data. filter returns the initial part of the convolution, the same length as the data. Otherwise, the algorithms are identical.

Smoothing estimates the center of the distribution of response values at each value of the predictor. It invalidates a basic assumption of many fitting algorithms, namely, that the errors at each value of the predictor are independent. Accordingly, you can use smoothed data to identify a model, but avoid using smoothed data to fit a model.

\section*{Summarizing Data}
- "Overview" on page 3-55
- "Measures of Location" on page 3-55
- "Measures of Scale" on page 3-56
- "Shape of a Distribution" on page 3-56

\section*{Overview}

Many MATLAB functions enable you to summarize the overall location, scale, and shape of a data sample.

One of the advantages of working in MATLAB is that functions operate on entire arrays of data, not just on single scalar values. The functions are said to be vectorized. Vectorization allows for both efficient problem formulation, using array-based data, and efficient computation, using vectorized statistical functions.

\section*{Measures of Location}

Summarize the location of a data sample by finding a "typical" value. Common measures of location or "central tendency" are computed by the functions mean, median, and mode:
```

load count.dat
x1 = mean(count)
x1 =
32.0000 46.5417 65.5833
x2 = median(count)
x2 =
23.5000 36.0000 39.0000
x3 = mode(count)
x3 =
11 9 9

```

Like all of its statistical functions, the MATLAB functions above summarize data across observations (rows) while preserving variables (columns). The functions compute the location of the data at each of the three intersections in a single call.

\section*{Measures of Scale}

There are many ways to measure the scale or "dispersion" of a data sample. The MATLAB functions max, min, std, and var compute some common measures:
```

dx1 = max(count)-min(count)
dx1 =
107 136 250
dx2 = std(count)
dx2 =
25.3703 41.4057 68.0281
dx3 = var(count)
dx3 =
1.0e+003 *
0.6437 1.7144 4.6278

```

Like all of its statistical functions, the MATLAB functions above summarize data across observations (rows) while preserving variables (columns). The functions compute the scale of the data at each of the three intersections in a single call.

\section*{Shape of a Distribution}

The shape of a distribution is harder to summarize than its location or scale. The MATLAB hist function plots a histogram that provides a visual summary:
```

figure
hist(count)
legend('Intersection 1',...
'Intersection 2',...
'Intersection 3')

```


Parametric models give analytic summaries of distribution shapes.
Exponential distributions, with parameter mu given by the data mean, are a good choice for the traffic data:
```

c1 = count(:,1); % Data at intersection 1
[bin_counts,bin_locations] = hist(c1);
bin_width = bin_locations(2) - bin_locations(1);
hist_area = (bin_width)*(sum(bin_counts));
figure
hist(c1)
hold on
mu1 = mean(c1);
exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates
% to 1
t = 0:150;

```
```

y = exp_pdf(t);
plot(t,(hist_area)*y,'r','LineWidth',2)
legend('Distribution','Exponential Fit')

```


Methods for fitting general parametric models to data distributions are beyond the scope of this section. Statistics Toolbox software provides functions for computing maximum likelihood estimates of distribution parameters.

\section*{Visualizing Data}
- "Overview" on page 3-59
- "2-D Scatter Plots" on page 3-59
- "3-D Scatter Plots" on page 3-61
- "Scatter Plot Arrays" on page 3-63
- "Exploring Data in Graphs" on page 3-64

\section*{Overview}

You can use many MATLAB graph types for visualizing data patterns and trends. Scatter plots, described in this section, help to visualize relationships among the traffic data at different intersections. Data exploration tools let you query and interact with individual data points on graphs.

Note This section continues the data analysis from "Summarizing Data" on page 3-54.

\section*{2-D Scatter Plots}

A two-dimensional scatter plot, created with the scatter function, shows the relationship between the traffic volume at the first two intersections:
```

load count.dat
c1 = count(:,1); % Data at intersection 1
c2 = count(:,2); % Data at intersection 2
figure
scatter(c1,c2,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')

```


The covariance, computed by the cov function measures the strength of the linear relationship between the two variables (how tightly the data lies along a least-squares line through the scatter):
```

C12 = cov([c1 c2])
C12 =
1.0e+003 *
0.6437 0.9802
0.9802 1.7144

```

The results are displayed in a symmetric square matrix, with the covariance of the \(i\) th and \(j\) th variables in the \((i, j)\) th position. The \(i\) th diagonal element is the variance of the \(i\) th variable.

Covariances have the disadvantage of depending on the units used to measure the individual variables. You can divide a covariance by the standard
deviations of the variables to normalize values between +1 and -1 . The corrcoef function computes correlation coefficients:
```

R12 = corrcoef([c1 c2])
R12 =
1.0000 0.9331
0.9331 1.0000
r12 = R12(1,2) % Correlation coefficient
r12 =
0.9331
r12sq = r12^2 % Coefficient of determination
r12sq =
0.8707

```

Because it is normalized, the value of the correlation coefficient is readily comparable to values for other pairs of intersections. Its square, the coefficient of determination, is the variance about the least-squares line divided by the variance about the mean. Thus, it is the proportion of variation in the response (in this case, the traffic volume at intersection 2) that is eliminated or statistically explained by a least-squares line through the scatter.

\section*{3-D Scatter Plots}

A three-dimensional scatter plot, created with the scatter3 function, shows the relationship between the traffic volume at all three intersections. Use the variables c1, c2, and c3 that you created in the previous step:
```

figure
scatter3(c1,c2,c3,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')
zlabel('Intersection 3')

```


Measure the strength of the linear relationship among the variables in the three-dimensional scatter by computing eigenvalues of the covariance matrix with the eig function:
```

vars = eig(cov([c1 c2 c3]))
vars =
1.0e+003 *
0.0442
0.1118
6.8300
explained = max(vars)/sum(vars)
explained =
0.9777

```

The eigenvalues are the variances along the principal components of the data. The variable explained measures the proportion of variation explained by the
first principal component, along the axis of the data. Unlike the coefficient of determination for two-dimensional scatters, this measure distinguishes predictor and response variables.

\section*{Scatter Plot Arrays}

Use the plotmatrix function to make comparisons of the relationships between multiple pairs of intersections:
```

figure
plotmatrix(count)

```


The plot in the \((i, j)\) th position of the array is a scatter with the \(i\) th variable on the vertical axis and the \(j\) th variable on the horizontal axis. The plot in the \(i\) th diagonal position is a histogram of the \(i\) th variable.

\section*{Exploring Data in Graphs}

Using your mouse, you can pick observations on almost any MATLAB graph with two tools from the figure toolbar:
- Data Cursor +
- Data Brushing on

These tools each place you in exploratory modes in which you can select data points on graphs to identify their values and create workspace variables to contain specific observations. When you use data brushing, you can also copy, remove or replace the selected observations.

For example, make a scatter plot of the first and third columns of count:
load count.dat
scatter(count(:,1), count(:,3))
Select the Data Cursor Tool \(\xlongequal{\text { t }}\) and click the rightmost data point. A datatip displaying the point's \(x\) and \(y\) value is placed there.


Datatips display \(x\)-, \(y\)-, and \(z\) - (for three-dimensional plots) coordinates by default. You can drag a datatip from one data point to another to see new values or add additional datatips by right-clicking a datatip and using the context menu. You can also customize the text that datatips display using MATLAB code.

Data brushing is a related feature that lets you highlight one or more observations on a graph by clicking or dragging. To enter data brushing mode, click the left side of the Data Brushing tool on on the figure toolbar. Clicking the arrow on the right side of the tool icon drops down a color palette for selecting the color with which to brush observations. This figure shows the same scatter plot as the previous figure, but with all observations beyond one standard deviation of the mean (as identified using the Tools > Data Statistics GUI) brushed in red.
```

scatter(count(:,1),count(:,3))

```


After you brush data observations, you can perform the following operations on them:
- Delete them.
- Replace them with constant values.
- Replace them with NaN values.
- Drag or copy, and paste them to the Command Window.
- Save them as workspace variables.

For example, use the Data Brush context menu or the
Tools > Brushing > Create new variable option to create a new variable called count13high.


A new variable in the workspace results:
```

count13high

```
count13high =
61186
75180
114257
Linked plots, or data linking, is a feature closely related to data brushing. A plot is said to be linked when it has a live connection to the workspace data it depicts. The copies of variables stored in a plot object's XData, YData, (and, where appropriate, ZData), automatically updated whenever the workspace variables to which they are linked change or are deleted. This causes the graphs on which they appear to update automatically.

Linking plots to variables lets you track specific observations through different presentations of them. When you brush data points in linked plots, brushing one graph highlights the same observations in every graph that is linked to the same variables.

Data linking establishes immediate, two-way communication between figures and workspace variables, in the same way that the Variable Editor communicates with workspace variables. You create links by activating the Data Linking tool \(\stackrel{\text { 氛 }}{ }\) on a figure's toolbar. Activating this tool causes the Linked Plot information bar, displayed in the next figure, to appear at the top of the plot (possibly obscuring its title). You can dismiss the bar (shown in the following figure) without unlinking the plot; it does not print and is not saved with the figure.

The following two graphs depict scatter plot displays of linked data after brushing some observations on the left graph. The common variable, count carries the brush marks to the right figure. Even though the right graph is not in data brushing mode, it displays brush marks because it is linked to its variables.
```

figure
scatter(count(:,1),count(:,2))
xlabel ('count(:,1)')
ylabel ('count(:,2)')
figure
scatter(count(:,3),count(:,2))
xlabel ('count(:,3)')
ylabel ('count(:,2)')

```


The right plot shows that the brushed observations are more linearly related than in the left plot.

Brushed data observations appear highlighted in the brushing color when you display those variables in the Variable Editor, as you can see here:
openvar count
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{EV Yariable Editor－count} & －\(\square^{\text {a }} \times\) \\
\hline \multicolumn{6}{|l|}{File Edit View Graphics Debug Desktop \gg \(\times \times\)} \\
\hline 回 & 戍渞嵲 & 31 M & 01．｜ & & ＂\(\square\) \\
\hline \multicolumn{6}{|l|}{隹 count＜24x3 double＞} \\
\hline & 1 & 2 & 3 & 4 & \\
\hline 1 & 11 & 11 & 9 & & \(\triangle\) \\
\hline 2 & 7 & 13 & 11 & & \\
\hline 3 & 14 & 17 & 20 & & \\
\hline 4 & 11 & 13 & 9 & & \\
\hline 5 & 43 & 51 & 69 & & \\
\hline 6 & 38 & 46 & 76 & & \\
\hline 7 & 61 & 132 & 186 & & \\
\hline 8 & 75 & 135 & 180 & & \\
\hline 9 & 38 & 88 & 115 & & \\
\hline 10 & 28 & 36 & 55 & & \\
\hline 11 & 12 & 12 & 14 & & \\
\hline 12 & 18 & 27 & 30 & & \\
\hline 13 & 18 & 19 & 29 & & \\
\hline 14 & 17 & 15 & 18 & & \\
\hline 15 & 19 & 36 & 48 & & \\
\hline 16 & 32 & 47 & 10 & & \\
\hline 17 & 42 & 65 & 92 & & \\
\hline 18 & 57 & 66 & 151 & & \\
\hline 19 & 44 & 55 & 90 & & \\
\hline 20 & 114 & 145 & 257 & & \\
\hline 21 & 35 & 58 & 68 & & \\
\hline 22 & 11 & 12 & 15 & & \\
\hline 23 & 13 & 9 & 15 & & \\
\hline 24 & 10 & 9 & 7 & & \(\checkmark\) \\
\hline & \(\square\) & & & & \(\checkmark\) \\
\hline \multicolumn{6}{|l|}{3 popdata \(\times\) count \(\times\)} \\
\hline
\end{tabular}

In the Variable Editor，you can alter any values of linked plot data，and the graphs will reflect your edits．To brush data observation from the Variable Editor，click its Brushing Tool button．If the variable you brush is currently depicted in a linked plot，the observations you brush highlight in the plot，as well as in the Variable Editor．When you brush a variable that is a column in a matrix，the other columns in that row are also brushed．That is，you can brush individual observations in a row or column vector，but all
columns in a matrix highlight in any row you brush, not just the observations you click.

\section*{Modeling Data}
- "Overview" on page 3-71
- "Polynomial Regression" on page 3-71
- "General Linear Regression" on page 3-72

\section*{Overview}

Parametric models translate an understanding of data relationships into analytic tools with predictive power. Polynomial and sinusoidal models are simple choices for the up and down trends in the traffic data.

\section*{Polynomial Regression}

Use the polyfit function to estimate coefficients of polynomial models, then use the polyval function to evaluate the model at arbitrary values of the predictor.

The following code fits the traffic data at the third intersection with a polynomial model of degree six:
```

load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
p_coeffs = polyfit(tdata,c3,6);
figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = polyval(p_coeffs,tfit);
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Polynomial Fit','Location','NW')

```


The model has the advantage of being simple while following the up-and-down trend. The accuracy of its predictive power, however, is questionable, especially at the ends of the data.

\section*{General Linear Regression}

Assuming that the data are periodic with a 12 -hour period and a peak around hour 7, it is reasonable to fit a sinusoidal model of the form:
\[
y=a+b \cos ((2 \pi / 12)(t-7))
\]

The coefficients \(a\) and \(b\) appear linearly. Use the MATLAB mldivide (backslash) operator to fit general linear models:
```

load count.dat
c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';

```
```

X = [ones(size(tdata)) cos((2*pi/12)*(tdata-7))];
s_coeffs = X\c3;
figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = [ones(size(tfit)) cos((2*pi/12)*(tfit-7))]*s_coeffs;
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Sinusoidal Fit','Location','NW')

```


Use the lscov function to compute statistics on the fit, such as estimated standard errors of the coefficients and the mean squared error:
```

[s_coeffs,stdx,mse] = lscov(X,c3)
s_coeffs =
65.5833

```
73.2819
stdx =
8.9185
12.6127
\(\mathrm{mse}=\)
\(1.9090 \mathrm{e}+003\)

Check the assumption of a 12 -hour period in the data with a periodogram, computed using the fft function:
```

Fs = 1; % Sample frequency (per hour)
n = length(c3); % Window length
Y = fft(c3); % DFT of data
f = (0:n-1)*(Fs/n); % Frequency range
P = Y.*conj(Y)/n; % Power of the DFT

```
figure
plot(f,P)
xlabel('Frequency')
ylabel('Power')
predicted_f = 1/12
predicted_f =
    0.0833


The peak near 0.0833 supports the assumption, although it occurs at a slightly higher frequency. The model can be adjusted accordingly.

\section*{Graphics}
- "Basic Plotting Functions" on page 4-2
- "Creating Mesh and Surface Plots" on page 4-16
- "Plotting Image Data" on page 4-23
- "Printing Graphics" on page 4-25
- "Working with Handle Graphics Objects" on page 4-28

\section*{Basic Plotting Functions}

\section*{In this section...}
"Creating a Plot" on page 4-2
"Plotting Multiple Data Sets in One Graph" on page 4-3
"Specifying Line Styles and Colors" on page 4-4
"Plotting Lines and Markers" on page 4-5
"Graphing Imaginary and Complex Data" on page 4-7
"Adding Plots to an Existing Graph" on page 4-8
"Figure Windows" on page 4-10
"Displaying Multiple Plots in One Figure" on page 4-10
"Controlling the Axes" on page 4-11
"Adding Axis Labels and Titles" on page 4-13
"Saving Figures" on page 4-14

\section*{Creating a Plot}

The plot function has different forms, depending on the input arguments.
- If \(y\) is a vector, plot (y) produces a piecewise linear graph of the elements of \(y\) versus the index of the elements of \(y\).
- If you specify two vectors as arguments, \(\operatorname{plot}(x, y)\) produces a graph of y versus \(x\).

For example, these statements use the colon operator to create a vector of \(x\) values ranging from 0 to \(2 \pi\), compute the sine of these values, and plot the result:
```

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

```

Add axis labels and a title.
```

xlabel('x = 0:2\pi')
ylabel('Sine of x')
title('Plot of the Sine Function','FontSize',12)

```

The characters \pi create the symbol п and the FontSize property increases the size the text used for the title:


\section*{Plotting Multiple Data Sets in One Graph}

Multiple \(x\)-y pair arguments create multiple graphs with a single call to plot. MATLAB uses a different color for each line.

For example, these statements plot three related functions of x :
```

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);

```
```

plot(x,y,x,y2,x,y3)

```

The legend function provides an easy way to identify the individual lines:
legend('sin(x)','sin(x-.25)','sin(x-.5)')


\section*{Specifying Line Styles and Colors}

It is possible to specify color, line styles, and markers (such as plus signs or circles) when you plot your data using the plot command:
plot(x,y,'color_style_marker')
color_style_marker is a string containing from one to four characters (enclosed in single quotes) constructed from a color, a line style, and a marker type. For example,
plot(x,y,'r:+')
plots the data using a red-dotted line and places a + marker at each data point.
The strings are composed of combinations of the following elements.
\begin{tabular}{|c|c|c|}
\hline Type & Values & Meanings \\
\hline Color & \[
\begin{aligned}
& \text { 'c' } \\
& \prime m^{\prime} \\
& ' y^{\prime} \\
& ' r^{\prime} \\
& \text { 'g' } \\
& \text { 'b' } \\
& \text { 'w' } \\
& \text { 'k' }
\end{aligned}
\] & \begin{tabular}{l}
cyan \\
magenta \\
yellow \\
red \\
green \\
blue \\
white \\
black
\end{tabular} \\
\hline Line style &  & \begin{tabular}{l}
solid \\
dashed \\
dotted \\
dash-dot \\
no line
\end{tabular} \\
\hline Marker type &  & \begin{tabular}{l}
plus mark \\
unfilled circle \\
asterisk \\
letter x \\
filled square \\
filled diamond \\
filled upward triangle \\
filled downward triangle \\
filled right-pointing triangle \\
filled left-pointing triangle \\
filled pentagram \\
filled hexagram \\
no marker
\end{tabular} \\
\hline
\end{tabular}

\section*{Plotting Lines and Markers}

If you specify a marker type, but not a line style, MATLAB creates the graph using only markers, but no line. For example,
plot(x,y,'ks')
plots black squares at each data point, but does not connect the markers with a line.

The statement
plot(x,y,'r:+')
plots a red-dotted line and places plus sign markers at each data point.

\section*{Placing Markers at Every Tenth Data Point}

You can use fewer data points to plot the markers than you use to plot the lines. This example plots the data twice using a different number of points for the dotted line and marker plots:
```

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

```


\section*{Graphing Imaginary and Complex Data}

When you pass complex values as arguments to plot, MATLAB ignores the imaginary part, except when you pass a single complex argument. For this special case, the command is a shortcut for a graph of the real part versus the imaginary part. Therefore,
plot(Z)
where \(Z\) is a complex vector or matrix, is equivalent to
plot(real(Z),imag(Z))
For example,
t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal
draws a 20 -sided polygon with little circles at the vertices. The axis equal command makes the individual tick-mark increments on the \(x\) - and \(y\)-axes the same length, which makes this plot more circular in appearance.


\section*{Adding Plots to an Existing Graph}

The hold command enables you to add plots to an existing graph. When you type,
hold on

MATLAB does not replace the existing graph when you issue another plotting command. Instead, MATLAB combines the new graph with the current graph.

For example, these statements first create a contour plot of the peaks function, then superimpose a pcolor (pseudocolor) plot of the same function:
\% Obtain data from evaluating peaks function
```

[x,y,z] = peaks;
% Create pseudocolor plot
pcolor(x,y,z)
% Remove edge lines a smooth colors
shading interp
% Hold the current graph
hold on
% Add the contour graph to the pcolor graph
contour(x,y,z,20,'k')
% Return to default
hold off

```

The hold on command combines the pcolor plot with the contour plot in one figure.


\section*{Figure Windows}

Graphing functions automatically open a new figure window if there are no figure windows already created. If there are multiple figure windows open, MATLAB uses the one that is designated as the "current figure" (the last figure used or clicked on).

To make an existing figure window the current figure, you can click the mouse while the pointer is in that window or you can type,
figure(n)
where n is the number in the figure title bar.
To open a new figure window and make it the current figure, type
```

figure

```

\section*{Clearing the Figure for a New Plot}

When a figure already exists, most plotting commands clear the axes and use this figure to create the new plot. However, these commands do not reset figure properties, such as the background color or the colormap. If you have set any figure properties in the previous plot, you might want to use the clf command with the reset option,
clf reset
before creating your new plot to restore the figure's properties to their defaults.

\section*{Displaying Multiple Plots in One Figure}

The subplot command enables you to display multiple plots in the same window or print them on the same piece of paper. Typing
subplot (m, n, p)
partitions the figure window into an m-by-n matrix of small subplots and selects the \(\mathrm{p}^{\text {th }}\) subplot for the current plot. The plots are numbered along the first row of the figure window, then the second row, and so on. For example, these statements plot data in four different subregions of the figure window:
```

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

```





\section*{Controlling the Axes}

The axis command provides a number of options for setting the scaling, orientation, and aspect ratio of graphs.

\section*{Automatic Axis Limits and Tick Marks}

By default, MATLAB finds the maxima and minima of the data and chooses the axis limits to span this range. MATLAB selects the limits and axis tick mark values to produce a graph that clearly displays the data. However, you can set your own limits using the axis or xlim, ylim, and zlim functions.

Note Changing the limits of one axis can cause other limits to change to better represent the data. To disable automatic limit setting, enter the axis manual command.

\section*{Setting Axis Limits}

The axis command enables you to specify your own limits:
axis([xmin xmax ymin ymax])
or for three-dimensional graphs,
axis([xmin xmax ymin ymax zmin zmax])
Use the command
axis auto
to enable automatic limit selection again.

\section*{Setting the Axis Aspect Ratio}

The axis command also enables you to specify a number of predefined modes. For example,
axis square
makes the \(x\)-axis and \(y\)-axis the same length.
axis equal
makes the individual tick mark increments on the \(x\)-axes and \(y\)-axes the same length. This means
plot(exp(i*[0:pi/10:2*pi]))
followed by either axis square or axis equal turns the oval into a proper circle:
axis auto normal
returns the axis scaling to its default automatic mode.

\section*{Setting Axis Visibility}

You can use the axis command to make the axis visible or invisible.
axis on
makes the axes visible. This is the default.
axis off
makes the axes invisible.

\section*{Setting Grid Lines}

The grid command toggles grid lines on and off. The statement
grid on
turns the grid lines on, and
grid off
turns them back off again.

\section*{Adding Axis Labels and Titles}

The xlabel, ylabel, and zlabel commands add \(x\)-, \(y\)-, and \(z\)-axis labels. The title command adds a title at the top of the figure and the text function inserts text anywhere in the figure.

You can produce mathematical symbols using LaTeX notation in the text string, as the following example illustrates:
t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)
```

axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(0.5,-1/3,'{\itNote the odd symmetry.}')

```


The location of the text string is defined in axes units (that is, the same units as the data). The annotation function enables you to place text in normalized figure units.

\section*{Saving Figures}

Save a figure by selecting Save from the File menu. This writes the figure to a file, including property data, its menus, uicontrols, and all annotations (i.e., the entire window). If you have not saved the figure before, the Save As dialog displays. This dialog box provides options to save the figure as a FIG-file or export it to a graphics format.

If you have previously saved the figure, using Save again saves the figure "silently," without displaying the Save As dialog.

To save a figure using a standard graphics format for use with other applications, such as TIFF or JPG, select Save As (or Export Setup, if you want additional control) from the File menu.

Note Whenever you specify a format for saving a figure, that file format is used again the next time you save that figure or a new one. If you do not want to save in the previously used format, use Save As and be sure to set the Save as type drop-down menu to the kind of file you want to write.

You can also save from the command line-use the saveas command, including any options to save the figure in a different format. The more restricted hgexport command, which saves figures to either bitmap or metafile files, depending on the rendering method in effect, is also available.

\section*{Saving Workspace Data}

You can save the variables in your workspace by selecting Save Workspace As from the figure File menu. You can reload saved data using the Import Data item in the figure File menu. MATLAB supports a variety of data file formats, including MATLAB data files, which have a .mat extension.

\section*{Generating MATLAB Code to Recreate a Figure}

You can generate MATLAB code that recreates a figure and the graph it contains by selecting Generate code from the figure File menu. This option is particularly useful if you have developed a graph using plotting tools and want to create a similar graph using the same or different data.

\title{
Creating Mesh and Surface Plots
}

\author{
In this section... \\ "About Mesh and Surface Plots" on page 4-16 \\ "Visualizing Functions of Two Variables" on page 4-16
}

\section*{About Mesh and Surface Plots}

MATLAB defines a surface by the \(z\)-coordinates of points above a grid in the \(x-y\) plane, using straight lines to connect adjacent points. The mesh and surf functions display surfaces in three dimensions.
- mesh produces wireframe surfaces that color only the lines connecting the defining points.
- surf displays both the connecting lines and the faces of the surface in color.

MATLAB colors surfaces by mapping z-data values to indexes into the figure colormap.

\section*{Visualizing Functions of Two Variables}

To display a function of two variables, \(z=f(x, y)\),
1 Generate \(X\) and \(Y\) matrices consisting of repeated rows and columns, respectively, over the domain of the function.

2 Use \(X\) and \(Y\) to evaluate and graph the function.
The meshgrid function transforms the domain specified by a single vector or two vectors \(x\) and \(y\) into matrices \(X\) and \(Y\) for use in evaluating functions of two variables. The rows of \(X\) are copies of the vector \(x\) and the columns of \(Y\) are copies of the vector \(y\).

\section*{Example - Graphing the sinc Function}

This example evaluates and graphs the two-dimensional sinc function, \(\sin (r) / r\), between the \(x\) and \(y\) directions. R is the distance from the origin, which
is at the center of the matrix. Adding eps (a MATLAB command that returns a small floating-point number) avoids the indeterminate \(0 / 0\) at the origin:
```

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

```


By default, MATLAB uses the current colormap to color the mesh. However, this example uses a single-colored mesh by specifying the EdgeColor surface property.

You can create a mesh with see-through faces by disabling hidden line removal:
```

hidden off

```

\section*{Example - Colored Surface Plots}

A surface plot is similar to a mesh plot except that the rectangular faces of the surface are colored. The color of each face is determined by the values of \(Z\) and the colormap (a colormap is an ordered list of colors). These statements graph the sinc function as a surface plot, specify a colormap, and add a color bar to show the mapping of data to color:
\(\operatorname{surf}(X, Y, Z)\)
colormap hsv
colorbar


\section*{Making Surfaces Transparent}

You can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole
object or can be based on an alphamap, which behaves similarly to colormaps. For example,
surf(X,Y,Z)
colormap hsv
alpha(.4)
produces a surface with a face alpha value of 0.4 . Alpha values range from 0 (completely transparent) to 1 (not transparent).


\section*{Illuminating Surface Plots with Lights}

Lighting is the technique of illuminating an object with a directional light source. In certain cases, this technique can make subtle differences in surface shape easier to see. Lighting can also be used to add realism to three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it red and removes the mesh lines. A light object is then added to the left of the "camera" (the camera is the location in space from where you are viewing the surface):
```

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

```


\section*{Manipulating the Surface}

The figure toolbar and the camera toolbar provide ways to explore three-dimensional graphics interactively. Display the camera toolbar by selecting Camera Toolbar from the figure View menu.

The following picture shows both toolbars with the Rotate 3D tool selected.


These tools enable you to move the camera around the surface object, zoom, add lighting, and perform other viewing operations without issuing commands.

The following picture shows the surface viewed by orbiting the camera toward the bottom using Rotate 3D. You can see the tool's cursor icon on the surface. As you drag, the viewing azimuth and elevation read out in the lower-left corner of the axes:.


Az: -27 El: 64

\section*{Plotting Image Data}
```

In this section...
"About Plotting Image Data" on page 4-23
"Reading and Writing Images" on page 4-24

```

\section*{About Plotting Image Data}

Two-dimensional arrays can be displayed as images, where the array elements determine brightness or color of the images. For example, the statements
\begin{tabular}{llrl}
\begin{tabular}{l} 
load durer \\
whos \\
Name
\end{tabular} & & \\
& Size & Bytes Class \\
X & \(648 \times 509\) & 2638656 & double array \\
caption & \(2 \times 28\) & 112 & char array \\
map & \(128 \times 3\) & 3072 & double array
\end{tabular}
load the file durer.mat, adding three variables to the workspace. The matrix X is a 648 -by- 509 matrix and map is a 128 -by- 3 matrix that is the colormap for this image.

MAT-files, such as durer.mat, are binary files that can be created on one platform and later read by the MATLAB software on a different platform.

The elements of \(X\) are integers between 1 and 128, which serve as indices into the colormap, map. Then
```

image(X)
colormap(map)
axis image

```
reproduces Albrecht Dürer's etching. A high-resolution scan of the magic square in the upper-right corner is available in another file. Type
```

load detail

```
and then use the up arrow key on your keyboard to reexecute the image, colormap, and axis commands.

\section*{Reading and Writing Images}

You can read standard image files (TIFF, JPEG, BMP, and so on, using the imread function. The type of data returned by imread depends on the type of image you are reading.

You can write MATLAB data to a variety of standard image formats using the imwrite function.

\section*{Printing Graphics}

\section*{In this section...}
"Overview of Printing" on page 4-25
"Printing from the File Menu" on page 4-25
"Exporting the Figure to a Graphics File" on page 4-26
"Using the Print Command" on page 4-26

\section*{Overview of Printing}

You can print a MATLAB figure directly on a printer connected to your computer or you can export the figure to one of the standard graphics file formats that MATLAB supports. There are two ways to print and export figures:
- Use the Print, Print Preview, or Export Setup GUI options under the File menu.
- Use the print command to print or export the figure from the command line.

The print command provides greater control over drivers and file formats. The Print Preview dialog box gives you greater control over figure size, proportions, placement, and page headers.

\section*{Printing from the File Menu}

There are two menu options under the File menu that pertain to printing:
- The Print Preview option displays a dialog box that lets you lay out and style figures for printing while previewing the output page, and from which you can print the figure. It includes options that formerly were part of the Page Setup dialog box.
- The Print option displays a dialog box that lets you choose a printer, select standard printing options, and print the figure.

Use Print Preview to determine whether the printed output is what you want. Click the Print Preview dialog box Help button to display information on how to set up the page.

\section*{Exporting the Figure to a Graphics File}

The Export Setup option in the File menu opens a GUI that enables you to set graphic characteristics, such as text size, font, and style, for figures you save as graphics files. The Export Setup dialog lets you define and apply templates to customize and standardize output. After setup, you can export the figure to a number of standard graphics file formats, such as EPS, PNG, and TIFF.

\section*{Using the Print Command}

The print command provides more flexibility in the type of output sent to the printer and allows you to control printing from function and script files. The result can be sent directly to your default printer or stored in a specified output file. A wide variety of output formats is available, including TIFF, JPEG, and PNG.

For example, this statement saves the contents of the current figure window as a PNG graphic in the file called magicsquare.png.
print -dpng magicsquare.png

To save the figure at the same size as the figure on the screen, use these statements:
```

set(gcf,'PaperPositionMode','auto')
print -dpng -rO magicsquare.png

```

To save the same figure as a TIFF file with a resolution of 200 dpi , use the following command:
print -dtiff -r200 magicsquare.tiff
If you type print on the command line
print
the current figure prints on your default printer.

\section*{Working with Handle Graphics Objects}

\section*{In this section...}
"Graphics Objects" on page 4-28
"Setting Object Properties" on page 4-30
"Functions for Working with Objects" on page 4-33
"Specifying Axes or Figures" on page 4-34
"Finding the Handles of Existing Objects" on page 4-36

\section*{Graphics Objects}

Graphics objects are the basic elements used to display graphs and user interface components. These objects are organized into a hierarchy, as shown by the following diagram.


When you call a plotting function, MATLAB creates the graph using various graphics objects, such as a figure window, axes, lines, text, and so on. Each object has a fixed set of properties, which you can use to control the behavior and appearance of your graph.

For example, the following statement creates a figure with a white background color and does not display the figure toolbar:
```

figure('Color','white','Toolbar','none')

```

\section*{Common Graphics Objects}

When you call a function to create a graph, MATLAB creates a hierarchy of graphics objects. For example, calling the plot function creates the following graphics objects:
- Figure - Window that contains axes, toolbars, menus, and so on.
- Axes - Coordinate system that contains the lines representing the data
- Lineseries plot objects - Lines that represent the of data passed to the plot function.
- Text - Labels for axes tick marks and optional titles and annotations.

Different types of graphs use different objects to represent data. All data objects are contained in axes and all objects (except root) are contained in figures.

The root is an abstract object that primarily stores information about your computer or MATLAB states. You cannot create an instance of the root object. The handle of the root object is always 0 .

\section*{Object Handles}

When MATLAB creates a graphics object, MATLAB assigns an identifier to the object. This identifier is called a handle. You can use this handle to access the object's properties with the set and get functions. For example, the following statements create a graph and return a handle to a lineseries object in h :
```

x = 1:10;
y = x.^3;
h = plot(x,y);

```

You can use the handle h to set the properties of the lineseries object. For example, you can set its Color property:
set(h,'Color','red')
You can also specify the lineseries properties when you call the plotting function:
```

h = plot(x,y,'Color','red');

```

You can query the lineseries properties to see the current value:
```

get(h,'LineWidth')

```

The get function returns the answer (in units of points for LineWidth):
```

ans =
0.5000

```

\section*{Finding the Properties of an Object}

If you call get with only a handle, MATLAB returns a list of the object's properties:
get (h)
If you call set with only a handle, MATLAB returns a list of the object's properties with information about possible values:
set(h)

\section*{Setting Object Properties}

All object properties have default values. However, you can change the settings of some properties to customize your graph. There are two ways to set object properties:
- Specify values for properties when you create the object.
- Set the property value on an object that already exists.

\section*{Setting Properties from Plotting Commands}

You can specify object property value pairs as arguments to many plotting functions, such as plot, mesh, and surf.

For example, plotting commands that create lineseries or surfaceplot objects enable you to specify property name/property value pairs as arguments. The command
```

[x,y,z] = peaks;
surf(x,y,z,...
'FaceColor','interp',...

```
```

'EdgeColor', [.7, .7, .7])

```
plots the data in the variables \(\mathrm{x}, \mathrm{y}\), and z using a surfaceplot object with interpolated face color and light gray colored edges.

\section*{Setting Properties of Existing Objects}

To modify the property values of existing objects, use the set function. Plotting functions return the handles of the data objects that they create (lines, surfaces, images, and so on). For example, the following statements plot a 5-by- 5 matrix (creating five lineseries objects, one per column), and then set the Marker property to square and the MarkerFaceColor property to green:
```

y = magic(5);
h = plot(y);
set(h,'Marker','s','MarkerFaceColor','g')

```

In this case, h is a vector containing five handles, one for each of the five lineseries in the graph. The set statement sets the Marker and MarkerFaceColor properties of all lineseries to the same values.

To set a property value on one object, index into the handle array:
```

set(h(1),'LineWidth',2)

```

\section*{Setting Multiple Property Values}

If you want to set the properties of each lineseries to a different value, you can use cell arrays to store all the data and pass it to the set command. For example, create a plot and save the lineseries handles:
h = plot(magic(5));
Suppose you want to add different markers to each lineseries and color the marker's face color the same color as the lineseries. You need to define two cell arrays-one containing the property names and the other containing the desired values of the properties.

The prop_name cell array contains two elements:
prop_name(1) = \{'Marker'\};
prop_name(2) = \{'MarkerFaceColor'\};

The prop_values cell array contains 10 values: five values for the Marker property and five values for the MarkerFaceColor property. Notice that prop_values is a two-dimensional cell array. The first dimension indicates which handle in h the values apply to and the second dimension indicates which property the value is assigned to:
```

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

```

The MarkerFaceColor is always assigned the value of the corresponding line's color (obtained by getting the lineseries Color property with the get function).

After defining the cell arrays, call set to specify the new property values:
```

set(h,prop_name,prop_values)

```


\section*{Functions for Working with Objects}

This table lists functions commonly used when working with objects.
\begin{tabular}{l|l}
\hline Function & Purpose \\
\hline allchild & Find all children of specified objects. \\
\hline ancestor & Find ancestor of graphics object. \\
\hline copyobj & Copy graphics object. \\
\hline delete & Delete an object. \\
\hline findall & Find all graphics objects (including hidden handles). \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Function & Purpose \\
\hline findobj & \begin{tabular}{l} 
Find the handles of objects having specified property \\
values.
\end{tabular} \\
\hline gca & Return the handle of the current axes. \\
\hline gcf & Return the handle of the current figure. \\
\hline gco & Return the handle of the current object. \\
\hline get & Query the values of an object's properties. \\
\hline ishandle & True if the value is a valid object handle. \\
\hline set & Set the values of an object's properties. \\
\hline
\end{tabular}

\section*{Specifying Axes or Figures}

MATLAB always creates an axes or figure if one does not exist when you execute a plotting command. However, when you are creating graphics from a program file, it is good practice to create and specify the parent axes and figure explicitly, particularly if others people use your program. Specifying the parent prevents the following problems:
- Your program overwrites the graph in the current figure. A figure becomes the current figure whenever a user clicks it.
- The current figure might be in an unexpected state and not behave as your program expects.

The following example shows a MATLAB function that evaluates a mathematical expression over the range specified in the input argument \(x\), and then plots the results. A second call to the plot function plots the mean value of the results as a red line.
```

function myfunc(x)
% Evaluate the expression using the input argument
y = 1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x);
% Calculate the mean
ym = mean(y);
% Create a figure, axes parented to that axes

```
```

 % and the using the axes
 hfig = figure('Name','Function and Mean');
 hax = axes('Parent',hfig);
 plot(hax,x,y)
 % Hold the current plot and add a red line along the mean value
 hold on
 plot(hax,[min(x) max(x)],[ym ym],'Color','red')
 hold off
 % Add a tick label that shows the mean value
 % and add a title and axis labels
 ylab = get(hax,'YTick');
 set(hax,'YTick',sort([ylab ym]))
 title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
 xlabel('X Axis'); ylabel('Y Axis')
 end

```

First, define a value for the input argument and call the function:
\(x=-10: .005: 40 ;\)
myfunc (x)


\section*{Finding the Handles of Existing Objects}

The findobj function enables you to obtain the handles of graphics objects by searching for objects with particular property values. With findobj you can specify the values of any combination of properties, which makes it easy to pick one object out of many. findobj also recognizes regular expressions.

For example, you might want to find the blue line with square marker having blue face color. You can also specify which figures or axes to begin searching from, if there are more than one. The following four sections provide examples illustrating how to use findobj.

\section*{Finding All Objects of a Certain Type}

Because all objects have a Type property that identifies the type of object, you can find the handles of all occurrences of a particular type of object. For example,
h = findobj('Type','patch');
finds the handles of all patch objects.

\section*{Finding Objects with a Particular Property}

You can specify multiple properties to narrow the search. For example,
```

h = findobj('Type','line','Color','r','LineStyle',':');

```
finds the handles of all red dotted lines.

\section*{Limiting the Scope of the Search}

You can specify the starting point in the object hierarchy by passing the handle of the starting figure or axes as the first argument. For example,
```

h = findobj(gca,'Type','text','String','\pi/2');

```
finds the string \(\Pi / 2\) only within the current axes.

\section*{Using findobi as an Argument}

Because findobj returns the handles it finds, you can use it in place of the handle argument. For example,
```

set(findobj('Type','line','Color','red'),'LineStyle',':')

```
finds all red lines and sets their line style to dotted.

\section*{Programming}
- "Control Flow" on page 5-2
- "Scripts and Functions" on page 5-10

\section*{Control Flow}
```

In this section...
"Conditional Control - if, else, switch" on page 5-2
"Loop Control - for, while, continue, break" on page 5-5
"Program Termination — return" on page 5-7
"Vectorization" on page 5-8
"Preallocation" on page 5-8

```

\section*{Conditional Control - if, else, switch}

Conditional statements enable you to select at run time which block of code to execute. The simplest conditional statement is an if statement. For example:
```

% Generate a random number
a = randi(100, 1);
% If it is even, divide by 2
if rem(a, 2) == 0
disp('a is even')
b = a/2;
end

```
if statements can include alternate choices, using the optional keywords elseif or else. For example:
a = randi(100, 1);
if a < 30
    disp('small')
elseif a < 80
    disp('medium')
else
    disp('large')
end

Alternatively, when you want to test for equality against a set of known values, use a switch statement. For example:
```

[dayNum, dayString] = weekday(date, 'long', 'en_US');
switch dayString
case 'Monday'
disp('Start of the work week')
case 'Tuesday'
disp('Day 2')
case 'Wednesday'
disp('Day 3')
case 'Thursday'
disp('Day 4')
case 'Friday'
disp('Last day of the work week')
otherwise
disp('Weekend!')
end

```

For both if and switch, MATLAB executes the code corresponding to the first true condition, and then exits the code block. Each conditional statement requires the end keyword.

In general, when you have many possible discrete, known values, switch statements are easier to read than if statements. However, you cannot test for inequality between switch and case values. For example, you cannot implement this type of condition with a switch:
```

yourNumber = input('Enter a number: ');
if yourNumber < 0
disp('Negative')
elseif yourNumber > 0
disp('Positive')
else
disp('Zero')
end

```

\section*{Array Comparisons in Conditional Statements}

It is important to understand how relational operators and if statements work with matrices. When you want to check for equality between two variables, you might use
```

if A == B, ...

```

This is valid MATLAB code, and does what you expect when \(A\) and \(B\) are scalars. But when \(A\) and \(B\) are matrices, \(A==B\) does not test if they are equal, it tests where they are equal; the result is another matrix of 0 s and 1 s showing element-by-element equality. (In fact, if A and B are not the same size, then \(A==B\) is an error.)
```

A = magic(4); B = A; B(1,1) = 0;
A == B
ans =

0	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

```

The proper way to check for equality between two variables is to use the isequal function:
if isequal(A, B), ...
isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix, as the expression to be evaluated by the if function. Using the A and B matrices from above, you get
```

isequal(A, B)
ans =
0

```

Here is another example to emphasize this point. If \(A\) and \(B\) are scalars, the following program will never reach the "unexpected situation". But for most pairs of matrices, including our magic squares with interchanged columns, none of the matrix conditions \(\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}\), or \(\mathrm{A}==\mathrm{B}\) is true for all elements and so the else clause is executed:
```

if A > B
'greater'
elseif A < B
'less'
elseif A == B
'equal'

```
```

else
error('Unexpected situation')
end

```

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for use with if, including
isequal
isempty
all
any

\section*{Loop Control - for, while, continue, break}

This section covers those MATLAB functions that provide control over program loops.

\section*{for}

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end delineates the statements:
```

for n = 3:32
r(n) = rank(magic(n));
end
r

```

The semicolon terminating the inner statement suppresses repeated printing, and the \(r\) after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested:
```

for i = 1:m
for j = 1:n
H(i,j) = 1/(i+j);
end
end

```

\section*{while}

The while loop repeats a group of statements an indefinite number of times under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to find a zero of a polynomial:
```

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
x = (a+b)/2;
fx = x^3-2*x-5;
if sign(fx) == sign(fa)
a = x; fa = fx;
else
b = x; fb = fx;
end
end
x

```

The result is a root of the polynomial \(x^{3}-2 x-5\), namely
```

x =
2.09455148154233

```

The cautions involving matrix comparisons that are discussed in the section on the if statement also apply to the while statement.

\section*{continue}

The continue statement passes control to the next iteration of the for loop or while loop in which it appears, skipping any remaining statements in the body of the loop. The same holds true for continue statements in nested loops. That is, execution continues at the beginning of the loop in which the continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the file magic.m, skipping all blank lines and comments. A continue statement is used to advance to the next line in magic.m without incrementing the count whenever a blank line or comment line is encountered:
```

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)
continue
end
count = count + 1;
end
fprintf('%d lines\n',count);
fclose(fid);

```

\section*{break}

The break statement lets you exit early from a for loop or while loop. In nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this use of break a good idea?
```

a $=0 ; f a=-I n f ;$
b = 3; fb = Inf;
while b-a > eps*b
$x=(a+b) / 2 ;$
fx = $x^{\wedge} 3-2 * x-5$;
if $f x==0$
break
elseif sign(fx) == sign(fa)
$a=x ; f a=f x ;$
else
b = x; fb = fx;
end
end
x

```

\section*{Program Termination - return}

This section covers the MATLAB return function that enables you to terminate your program before it runs to completion.

\section*{return}
return terminates the current sequence of commands and returns control to the invoking function or to the keyboard. return is also used to terminate keyboard mode. A called function normally transfers control to the function that invoked it when it reaches the end of the function. You can insert a return statement within the called function to force an early termination and to transfer control to the invoking function.

\section*{Vectorization}

One way to make your MATLAB programs run faster is to vectorize the algorithms you use in constructing the programs. Where other programming languages might use for loops or DO loops, MATLAB can use vector or matrix operations. A simple example involves creating a table of logarithms:
```

x = .01;
for k = 1:1001
y(k) = log10(x);
x = x + .01;
end

```

A vectorized version of the same code is
```

x = .01:.01:10;
y = log10(x);

```

For more complicated code, vectorization options are not always so obvious.

\section*{Preallocation}

If you cannot vectorize a piece of code, you can make your for loops go faster by preallocating any vectors or arrays in which output results are stored. For example, this code uses the function zeros to preallocate the vector created in the for loop. This makes the for loop execute significantly faster:
```

r = zeros(32,1);
for n = 1:32
r(n) = rank(magic(n));
end

```

Without the preallocation in the previous example, the MATLAB interpreter enlarges the \(r\) vector by one element each time through the loop. Vector preallocation eliminates this step and results in faster execution.

\section*{Scripts and Functions}

\author{
In this section... \\ "Overview" on page 5-10 \\ "Scripts" on page 5-11 \\ "Functions" on page 5-12 \\ "Types of Functions" on page 5-14 \\ "Global Variables" on page 5-16 \\ "Command vs. Function Syntax" on page 5-16
}

\section*{Overview}

The MATLAB product provides a powerful programming language, as well as an interactive computational environment. You can enter commands from the language one at a time at the MATLAB command line, or you can write a series of commands to a file that you then execute as you would any MATLAB function. Use the MATLAB Editor or any other text editor to create your own function files. Call these functions as you would any other MATLAB function or command.

There are two kinds of program files:
- Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.
- Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you are a new MATLAB programmer, just create the program files that you want to try out in the current folder. As you develop more of your own files, you will want to organize them into other folders and personal toolboxes that you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first in the search path.

To view the contents of a program file, for example, myfunction.m, use
type myfunction

\section*{Scripts}

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can produce graphical output using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB commands:
```

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
r(n) = rank(magic(n));
end
r
bar(r)

```

Typing the statement
magicrank
causes MATLAB to execute the commands, compute the rank of the first 30 magic squares, and plot a bar graph of the result. After execution of the file is complete, the variables \(n\) and \(r\) remain in the workspace.


\section*{Functions}

Functions are files that can accept input arguments and return output arguments. The names of the file and of the function should be the same. Functions operate on variables within their own workspace, separate from the workspace you access at the MATLAB command prompt.

A good example is provided by rank. The file rank.m is available in the folder toolbox/matlab/matfun

You can see the file with

\section*{type rank}

Here is the file:
```

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly
% independent rows or columns of a matrix A.

```
```

% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.
s = svd(A);
if nargin==1
tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

```

The first line of a function starts with the keyword function. It gives the function name and order of arguments. In this case, there are up to two input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment lines that provide the help text. These lines are printed when you type
help rank
The first line of the help text is the H1 line, which MATLAB displays when you use the lookfor command or request help on a folder.

The rest of the file is the executable MATLAB code defining the function. The variable s introduced in the body of the function, as well as the variables on the first line, r, A and tol, are all local to the function; they are separate from any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily found in other programming languages-a variable number of arguments. The rank function can be used in several different ways:
```

rank(A)
r = rank(A)
r = rank(A,1.e-6)

```

Many functions work this way. If no output argument is supplied, the result is stored in ans. If the second input argument is not supplied, the function computes a default value. Within the body of the function, two quantities named nargin and nargout are available that tell you the number of input and output arguments involved in each particular use of the function. The rank function uses nargin, but does not need to use nargout.

\section*{Types of Functions}

MATLAB offers several different types of functions to use in your programming.

\section*{Anonymous Functions}

An anonymous function is a simple form of the MATLAB function that is defined within a single MATLAB statement. It consists of a single MATLAB expression and any number of input and output arguments. You can define an anonymous function right at the MATLAB command line, or within a function or script. This gives you a quick means of creating simple functions without having to create a file for them each time.

The syntax for creating an anonymous function from an expression is
\(\mathrm{f}=@(\) arglist \()\) expression
The statement below creates an anonymous function that finds the square of a number. When you call this function, MATLAB assigns the value you pass in to variable \(x\), and then uses \(x\) in the equation \(x .{ }^{\wedge} 2\) :
sqr \(=@(x) x . \wedge 2 ;\)

To execute the sqr function defined above, type
```

a = sqr(5)
a =
25

```

\section*{Primary and Subfunctions}

Any function that is not anonymous must be defined within a file. Each such function file contains a required primary function that appears first, and any number of subfunctions that can follow the primary. Primary functions have a wider scope than subfunctions. That is, primary functions can be called from outside of the file that defines them (for example, from the MATLAB command line or from functions in other files) while subfunctions cannot. Subfunctions are visible only to the primary function and other subfunctions within their own file.

The rank function shown in the section on "Functions" on page \(5-12\) is an example of a primary function.

\section*{Private Functions}

A private function is a type of primary function. Its unique characteristic is that it is visible only to a limited group of other functions. This type of function can be useful if you want to limit access to a function, or when you choose not to expose the implementation of a function.

Private functions reside in subfolders with the special name private. They are visible only to functions in the parent folder. For example, assume the folder newmath is on the MATLAB search path. A subfolder of newmath called private can contain functions that only the functions in newmath can call.

Because private functions are invisible outside the parent folder, they can use the same names as functions in other folders. This is useful if you want to create your own version of a particular function while retaining the original in another folder. Because MATLAB looks for private functions before standard functions, it will find a private function named test.m before a nonprivate file named test.m.

\section*{Nested Functions}

You can define functions within the body of another function. These are said to be nested within the outer function. A nested function contains any or all of the components of any other function. In this example, function \(B\) is nested in function \(A\) :
```

function x = A(p1, p2)
B(p2)
function y = B(p3)
..
end
...
end

```

Like other functions, a nested function has its own workspace where variables used by the function are stored. But it also has access to the workspaces of all functions in which it is nested. So, for example, a variable that has
a value assigned to it by the primary function can be read or overwritten by a function nested at any level within the primary. Similarly, a variable that is assigned in a nested function can be read or overwritten by any of the functions containing that function.

\section*{Global Variables}

If you want more than one function to share a single copy of a variable, simply declare the variable as global in all the functions. Do the same thing at the command line if you want the base workspace to access the variable. The global declaration must occur before the variable is actually used in a function. Although it is not required, using capital letters for the names of global variables helps distinguish them from other variables. For example, create a new function in a file called falling.m:
```

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

```

Then interactively enter the statements
```

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

```

The two global statements make the value assigned to GRAVITY at the command prompt available inside the function. You can then modify GRAVITY interactively and obtain new solutions without editing any files.

\section*{Command vs. Function Syntax}

You can write MATLAB functions that accept string arguments without the parentheses and quotes. That is, MATLAB interprets
```

foo a b c

```
as
foo('a','b','c')
However, when you use the unquoted command form, MATLAB cannot return output arguments. For example,
```

legend apples oranges

```
creates a legend on a plot using the strings apples and oranges as labels. If you want the legend command to return its output arguments, then you must use the quoted form:
[legh,objh] = legend('apples','oranges');
In addition, you must use the quoted form if any of the arguments is not a string.

Caution While the unquoted command syntax is convenient, in some cases it can be used incorrectly without causing MATLAB to generate an error.

\section*{Constructing String Arguments in Code}

The quoted function form enables you to construct string arguments within the code. The following example processes multiple data files, August1.dat, August2.dat, and so on. It uses the function int2str, which converts an integer to a character, to build the file name:
```

for d = 1:31
s = ['August' int2str(d) '.dat'];
load(s)
% Code to process the contents of the d-th file
end

```

\section*{Symbols and Numerics}
: operator 1-11 2-22
2-D scatter plots
getting started 3-59
3-D scatter plots
getting started 3-61

\section*{A}
algorithms
vectorizing 5-8
ans function 2-5
array operators 1-7 2-13
arrays 1-6
and matrices 2-13
cell 2-30
character 2-32
columnwise organization 3-47
deleting rows and columns 2-24
elements 2-11
generating with functions and operators 1-7 2-8
listing contents 1-13 2-10
multidimensional 2-28
notation for elements 2-11
preallocating 5-8
structure 2-35
variable names 2-10
arrow keys for editing commands 2-20
aspect ratio of axes 4-12
axes
managing 4-11
visibility \(4-13\)
axis
labels 1-18 4-13
titles 4-13
axis function 4-11

\section*{B}
break function 5-7
built-in functions
defined 2-15

\section*{C}
cell arrays 2-30
char function 2-34
character arrays 2-32
Cholesky factorization 3-26
coefficient of determination
described 3-61
colon operator 1-11 2-22
colormap 4-18
colors
lines for plotting 1-18 4-4
command line
editing 1-3 2-20
complex numbers 2-12
plotting 4-7
concatenation
defined 1-9 2-23
of strings 2-33
constants
special 2-15
continue function 5-6
continuing statements on multiple lines 2-20
control keys for editing commands 2-20
correlation coefficient
example using corrcoef 3-61
covariance
example using cov 3-60

\section*{D}
data analysis
getting started 3-48
decomposition
eigenvalue 3-37

Schur 3-40
singular value \(3-40\)
deleting array elements 2-24
desktop
for MATLAB 1-3
determinant of matrix 3-22
diag function 2-5
distribution modeling
getting started 3-56
documentation 1-28
dot product 3-6

\section*{E}
editing command lines 1-3 2-20
eigenvalues 3-37
eigenvectors 3-37
elements of arrays 2-11
entering matrices 2-4
examples 1-28
expressions
examples 2-16
using in MATLAB 2-10
eye
derivation of the name 3-9

\section*{F}
factorization
Cholesky 3-26
Hermitian positive definite 3-27
LU 3-28
partial pivoting 3-28
positive definite 3-27
QR 3-30
figure function 4-10
figure windows 4-10
with multiple plots 1-22 4-10
filtering data
getting started 3-51
find function 2-27
finding object handles 4-36
fliplr function 2-7
floating-point numbers 2-11
flow control 5-2
for loop 5-5
format of output display 2-18
format function 2-18
function files 5-10
function functions 3-44
function handles
defined 3-44
using 3-46
function keyword 5-13
function of two variables 1-21 4-16
function program files
naming 5-12
functions
built-in, defined 2-15
calling 1-17
defined 5-12
how to find 2-15
how to find help on 1-28
variable number of arguments 5-13

\section*{G}

Gaussian elimination 3-28
global variables 5-16
graphics
files 4-26
Handle Graphics 4-28
objects 4-28
printing 4-25
grids 4-13

\section*{H}

Handle Graphics 4-28
finding handles 4-36
help functions 1-28
Hermitian positive definite matrix 3-27
hold function 1-20 4-8

\section*{I}
identity matrix 3-9
images 4-23
imaginary numbers 1-10 2-11
inner product 3-5
inverse of matrix 3-22

\section*{K}
keys for editing in Command Window 2-20
Kronecker tensor matrix product 3-9

\section*{L}
legend
adding to plot 4-4
legend function 4-4
lighting 4-19
limits
axes 4-12
line continuation 2-20
line styles of plots 1-18 4-4
linear equations
minimal norm solution \(3-25\)
overdetermined systems 3-17
rectangular systems 3-24
linear regression
getting started 3-72
linear systems of equations
full 3-11
linear transformation 3-2
local variables 5-13
logical vectors 2-26
LU factorization 3-28

\section*{M}
magic function \(2-7\)
magic square \(2-5\)
markers 1-18 4-5
MAT-file 4-23
mathematical functions
listing advanced 2-15
listing elementary 2-15
listing matrix 2-15

\section*{MATLAB}
desktop 1-3
matrices 1-6 3-1 to 3-2
as linear transformation 3-2
creating 1-6 2-21
creation 3-2
determinant 3-22
entering 2-4
identity 3-9
inverse 3-22
orthogonal 3-30
pseudoinverse 3-24
rank deficiency 3-19
symmetric \(3-5\)
triangular 3-26
matrix 1-6 2-2
antidiagonal 2-7
main diagonal 2-6
swapping columns 1-11 2-8
transpose 2-5
matrix operations
addition and subtraction 3-4
division 3-12
exponentials 3-35
multiplication 3-7
powers 3-34
transpose 3-5
matrix products
Kronecker tensor 3-9
measures of location getting started 3-55
measures of scale
getting started 3-56
mesh plot 1-21 4-16
missing data
getting started 3-49
modeling data
getting started 3-71
Moore-Penrose pseudoinverse 3-24
multidimensional arrays \(2-28\)
multiple data sets
plotting 4-3
multiple plots per figure 1-22 4-10
multivariate data
organizing 3-47

\section*{N}
norms
vector and matrix 3-10
numbers 2-11
complex 1-10 2-12
floating-point 2-11

\section*{0}
object properties 4-30
objects
finding handles 4-36
graphics 4-28
operators 2-12
colon 1-11 2-22
orthogonal matrix 3-30
outer product 3-5
outliers
getting started 3-50
output
controlling format 2-18
suppressing 1-3 2-19
overdetermined
rectangular matrices 3-17
overlaying plots 1-20 4-8

\section*{P}
periodogram 3-74
plot
titles 1-18
plot function 1-18 4-2
plotting
adding legend 4-4
adding plots 1-20 4-8
basic 4-2
complex data 4-7
complex numbers 4-7
contours 4-8
functions 4-2
line colors 1-18 4-4
line styles 1-184-4
lines and markers 1-18 4-5
mesh and surface 1-21 4-16
multiple data sets \(4-3\)
multiple plots 1-22 4-10
overview 1-18
polynomial regression
getting started 3-71
PostScript 4-26
preallocation 5-8
preprocessing data
getting started 3-48
principal components 3-62
print function 4-25
printing
graphics 4-25
program files
creating 1-24 5-10
function \(5-10\)
scripts 1-24 5-10
pseudoinverse
of matrix 3-24

\section*{Q}

QR factorization 3-30

\section*{R}
rank deficiency
detecting 3-32
rectangular matrices 3-19
rectangular matrices
identity 3-9
overdetermined systems 3-17
pseudoinverse 3-24
QR factorization 3-30
rank deficient 3-19
singular value decomposition 3-40
return function 5-8

\section*{S}
scalar
as a matrix 3-3
scalar expansion 1-11 2-25
scalar product 3-6
scatter plot arrays
getting started 3-63
Schur decomposition 3-40
scientific notation 2-11
script files 1-24 5-10
scripts 1-24 5-11
semicolon to suppress output 1-3 2-19
singular value matrix decomposition 3-40
smoothing data
getting started 3-51
solving linear systems of equations
full 3-11
special constants
infinity 2-16
not-a-number 2-16
statements
continuing on multiple lines 2-20
strings
concatenating 2-33
structures 2-35
subplot function 4-10
subscripting
with logical vectors 2-26
subscripts 1-11 2-21
sum function 2-5
summarizing data
getting started 3-54
suppressing output 1-3 2-19
surface plot 1-21 4-16
symmetric matrix
transpose \(3-5\)

\section*{T}
text
entering in MATLAB 2-32
TIFF 4-26
title
figure 1-18 4-13
transpose 1-7
complex conjugate 3-6
unconjugated complex 3-6
transpose function 2-5
triangular matrix 3-26

\section*{\(\mathbf{U}\)}
unitary matrices
QR factorization 3-30

\section*{V}
variables 1-13 2-10
global 5-16
local 5-13
vector products
dot or scalar 3-6
outer and inner 3-5
vectorization 5-8
vectors 1-6 2-2
column and row 3-3
logical 2-26
multiplication 3-5
preallocating 5-8
visibility of axes \(4-13\)
visualizing data getting started 3-58

\section*{w}
while loop 5-6
windows
in MATLAB 1-3
windows for plotting 4-10
wireframe
surface 1-21 4-16```

