
COLOR IMAGE QUANTIZATION
FOR

FRAME BUFFER DISPLAY

Paul Heckbert
Computer Graphics Lab

New York Institute of Technology

ABSTRACT

Algorithms for adaptive, tapered quant-
ization of color images are described.
The research is motivated by the desire to
display high-quality reproductions of
color images with small frame buffers. It
is demonstrated that many color images
which would normally require a frame buffer
having 15 bits per pixel can be qua ntized
to 8 or fewer bits per pixel with little
subjective degradation. In most cases,
the resulting images look significantly
better than those made with uniform quant-
ization.

The color image quantization task is
broken into four phases:

i) Sampling the original image for color
statistics

2) Choosing a colormap based on the
color statistics

3) Mapping original colors to their
nearest neighbors in the colormap

4) Quantizing and redrawing the original
image (with optional dither).

Several algorithms for each of phases
2-4 are described, and images created by
each given.

CR CATEGORIES: II.3.3 (Information Stor-
age and Retrieval): Information Search and
Retrieval - clustering; search process;
1.3.3 (Computer Graphics): Picture/Image
Generation - digitization and scanning;
display algorithms; 1.4.1 (Image Process-
ing) : Digitization - quantization.

General Terms: Algorithms.

Additional Key Words and Phrases: dither.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

1982 ACM 0-89791-076-1/82/007/0297 $00.75

INTRODUCTION

The power and versatility of frame
buffers has created an increasing demand
for them in industry, education, and the
home. Most of these frame buffers are
capable of displaying a static color image,
yet many of them do not contain the amount
of memory necessary to match the spatial
and color resolution of the human eye.
The eye is capable of distinguishing at
least fifty thousand colors [15]. There-
fore, it would take a frame buffer with at
least]5 bits per pixel to reproduce and
display a color image with no noticeable
contouring. On smaller frame buffers,
contouring effects can become objectionable.
One way to eliminate some of this quant-
ization error is to employ the method of
tapered quantization.

The purpose of this paper is to explore
techniques for color image quantization
with the goal of high-quality image display
on frame buffers.

The Original Image

Our input data are the red, green, and
blue separations of a digitized color
image. A typical form for the input image
is a rectangular array of pixels each hav-
ing 24 bits (8 bits per component). The
color components are usually represented
by numbers in the range [0,255]. If the
original image is in this form, then
strictly speaking it has already been
quantized (when it was digitized from a
video signal, for instance). We will
assume that this initial quantization does
not cause perceptible quantization errors.
This will be the case if (a) the full gamut
of RGB space is used, that is, if the
digitization equipment is set up so that
black is quantized to (r,g,b)=(0,0,0),
white to (255,255,255), red to (255,0,0),
etc. and (b) the 256 levels are approx-
imately equally spaced perceptually.
Given these conditions, we can regard the
24-bit original image as the "true" image.
We will try to approximate it as closely
as possible when we quantize.

297

Computer Graphics Volume 16, Number 3 July 1982

Frame Buffers and Colormaps

It is useful to distinguish between
two types of frame buffer architectures:
let's call them "segregated" and "inte-
grated". In segregated frame buffers,
there are three independent memories for
the red, green, and blue components of an
image. Typically 8 bits are used per
pixel. An integrated frame buffer, on the
other hand, stores a single color number
for each pixel rather than three separate
components. These color numbers (pixel
values) are used as addresses into a single
color lookup table (colormap). The color-
map provides a level of indirection between
the data in the picture memory and the
actual displayed image. For a more
thorough discussion of frame buffer hard-
ware, see Newman and Sproull [18].

The algorithms we will discuss are
intended for integrated frame buffers
having a colormap.

Introduction to Quantization

Definitions:
Quantization is the process of assign-

ing representation values to ranges of
input values. In image processing, the
value being quantized can be an analog or
digital signal.

Color image quantization is the
process of selecting a set of colors to
represent the color gamut of an image,
and computing the mapping from color space
to representative colors.

There are two general classes of
quantization methods: uniform and tapered.
In uniform quantization, the range of the
input variable is divided into intervals
of equal length. The choice of intervals
in tapered quantization is usually based
on the statistical distribution of the
input variable. To compare the quality
of different quantizations, a distortion
measure, or error metric, is often intro-
duced. With this formalism, one can
search for the "optimal" tapered quant-
ization of a variable (or image).

Notation:
In the following, let x be an M-dim-

ensional input point (a 3-D color for our
purposes). A quantizer consists of:
(a) a set of K representative or output

points: Y = lYi, i=I,2 KI,
(b) a partition of the input space into

regions (quantization cells) :
R = {r i, i=1,2 KI,

(c) a mapping from input points to rep-
representative indices:

p(x) = i if x6r i, and
(d) the quantization function which maps

input points into output points:
q(x) = y[p(x)].

In color image quantization, Y is the
colormap into which we will quantize, K is
the number of colors in the colormap

(usually 1024 or less), and p is a mapping
from colors in the original image to pixel
values in the quantized image.

The images are notated as follows:
Let ci, j be the color of the pixel in

the original image at row i, column j,
where 0~i<NI and 0~j<NJ. Denote the
pixel value at row i, column j of the final
(quantized) image by fi,j" Note that c is

a vector matrix and f a scalar matrix. We
assume the original ann final images have
the same resolution.

COLOR I~GE QUANTIZATION

Uniform quantization, though compu-
tationally much faster than adaptive,
tapered quantization, leaves much room for
improvement. Compare the 24-bit original
image in fig. 2 with the uniform 8-bit
quantization in fig. 3. The contouring
here is quite serious. It results because
many of the colors in the colormap are not
used in the final picture; they are wasted.
By adapting a colormap to the color gamut
of the original image, we are assured of
using every color in the colormap, and
thereby reproducing the original image more
closely. That is the intuitive concept
behind tapered color image quantization.
We will now develop these ideas formally.

When an image is quantized, each of the
3-dimensional colors in the original image
must be encoded into a single pixel value.
To do this we compute the mapping:

fi,j = P(Ci,j) for 0~i<NI, 0 ~j<NJ.

The display processor in the frame
buffer displaying our final picture passes
the pixel values through the colormap Y:

YP(ci,j) = q(ci,j).

This will display a picture closely resem-
bling the original if we have quantized
well.

Measuring Quantization Error

To measure the difference between the
original and quantized images (the total
quantization error), we use the following
formula:

D = -- J L d(ci,4, q(ci,j))
i,j

where d(x,y) is a distortion function or
color metric which measures the "diff-
erence" between corresponding colors in the
original and final images [7]. We will use
a very simple color metric, distance
squared in RGB space:

d(x,y) = (xr-Yr) 2+(xg-yg)2+(xb-Yb) 2

where x = (Xr,Xg,X b) and Y=(Yr,Yg,Yb)"

298

Computer Graphics Volume 16, Number 3 July 1982

This formula is chosen for its computa-
tional speed and simplicity. Ideally, the
color metric should be perceptually-based,
since the human eye is final judge of
quantization quality. The use of YIQ or
Lab color space for the color metric would
probably improve our quantizers somewhat
[15].

We define the "optimal" quantizer (for
a given image and number of colors K) as
the one which minimizes D.

Quantization Literature

One-dimensional quantization has an
extensive literature [4], [9] , [17] , [19] .
It is possible to find optimal 1-dimen-
sional quantizers efficiently. Algorithms
which make use of dynamic programming [I]
to find an optimal quantizer for an N-level
input in O(N2K) time are given in [3] and
[8]. These can be used to quantize a mono-
chrome picture in a matter of seconds at
today's computer speeds.

Color image quantization has received
little attention in the literature until
recently. It is usually done by treating
the three color components independently.
Independent quantization in spaces such as
YIQ and Lab (see [15] and [20]) is ineffic-
ient because much of their space lies
outside the RGB color cube [ii]. Subjec-
tive experiments were used by In der
Smitten to subdivide RGB space into 125
volumes [i0]. Some contouring is visible
with his quantizer. Stenger has also done
some tests of tapered color quantization
[22]. Koontz, Narendra, and Fukunaga [14]
have published an algorithm for finding
the optimal quantization (they call them
"clusterings") for small input and output
sets. Their program required 28 seconds
to find the optimal classification of 120
points into 8 classes. They do not ana-
lyze the speed of their algorithm, so it
is difficult to predict the computation
time for larger quantization jobs such
as ours. Assuming a linear-time algorithm
(a conservative guess), quantizing several
hundred thousand colors would take half a
day. Clearly this is not practical.

Multidimensional quantization is much
more difficult than 1-dimensional quant-
ization. The reason for this is the
increased interdependency of quantization
cells. While in the one-dimensional case
all intervals are determined by the two
thresholds at either end, in the multi-
dimensional case the quantization cells can
be polytopes with any number of sides. The
complex topology of multidimensional
tapered quantization cells is suggested
by the shapes in fig. 18.

Optimal multidimensional quantization
has no known fast solution [7]. The
methods we will describe use heuristic
approaches to approximate the optimal.

ALGORITHMS FOR COLOR I~GE QUANTIZATION

The algorithms for color quantization
described below use the following four
phases:

i) sample image to determine color dis-
tribution

2) select colormap based on the distri-
bution

3) compute quantization mapping from 24-
bit colors to representative colors
(ie. colors in the colormap)

4) redraw the image, quantizing each
pixel.

Choosing the colormap is the most
challenging task. Once this is done,
computing the mapping table from colors to
pixel values is straightforward.

PHASE i: SAMPLING THE ORIGINAL IMAGE

The information needed by the colormap
selection algorithms of phase 2 is a hist-
ogram of the colors in the original image.
This is collected in one pass over the
input image. To conserve memory, a pre-
quantization from 24 bits to 15 bits (5
bits red, 5 bits green, 5 bits blue) is
suggested. In this case the color fre-
quency histogram will be a table of length
32768. This clumping of the colors has the
effect of reducing the number of different
colors and increasing the frequency of each
color. These properties are important to
the algorithms described below.

PHASE 2: CHOOSING A COLOR~P

We discuss two algorithms for choosing
a set of representatives (colormap) based
on the input distribution, and a process
which can be used to perturb the choice of
representatives to improve a quantizer.

The Popularity Algorithm

The popularity algorithm was developed
independently by two groups in 1978: Tom
Boyle and Andy Lippman at MIT's Architech-
ture Machine Group and Ephraim Cohen at the
New York Institute of Technology. Boyle &
Lippman's ideas were implemented by the
author at MIT [8]; the latter is unpub-
lished.

The assumption of this algorithm is
that the colormap can be made by finding
the densest regions in the color distri-
bution of the original image. The popu-
larity algorithm simply chooses the K
colors from the histogram with the highest
frequencies, and uses these for the color-
map. This can be done with a simple
selection sort [13]. This will take time
O(NK), where N is the number of colors in
the histogram.

The popularity algorithm functions well
for many images (fig. 4), but performs
poorly on ones with a wide range of colors

299

Computer Graphics Volume 16, Number 3 July 1982

(fig. 15), or when asked to quantize to a
small number of colors (say<50). It often
neglects colors in sparse regions of the
color space.

The Median Cut Alqorithm

The median cut algorithm was proposed
by the author in [8], and is reprinted here
with minor changes. Kenneth Sloan has
pointed out that the database used in this
algorithm is nearly identical to Bentley's
k-d trees [2].

The concept behind the median cut algo-
rithm is to use each of the colors in the
synthesized colormap to represent an equal
number of pixels in the original image.
This algorithm repeatedly subdivides color
space into smaller and smaller rectangular
boxes. We start with one box which tightly
encloses the colors of all NIxNJ pixels
from the original image. The number of
different colors in this first box is
dependent on the color resolution used.
Experimental results show that 15 bits per
color (the resolution of the histogram) is
sufficient in most cases.

Iteration step: split a box.
The box is "shrunk" to fit tightly

around the points (colors) it encloses, by
finding the minimum and maximum values of
each of the color coordinates. Next we use
"adaptive partitioning" (Bentley's termin-
ology) to decide which way to split the box.
The enclosed points are sorted along the
longest dimension of the box, and segregated
into two halves at the median point.
Approximately equal numbers of points will
fall on each side of the cutting plane.

The above step is recursively applied
until K boxes are generated. If, at some
point in the subdivision, we attempt to
split a box containing only one point
(repeated many times, perhaps), the spare
box (which would have gone unused) can be
reassigned to split the largest box we can
find.

After K boxes are generated, the repre-
sentative for each box is computed by aver-
aging the colors contained in each. The
list of representatives is the colormap Y.

The sorting'used in the iteration step
can be done efficiently with a radix list
sort [13], since the color coordinates are
small integers, generally within the range
[0,255]. Splitting each box will therefore
take time proportional to the number of
different colors enclosed. Generating the
colormap will take O(NlogK) time, where N
is the number of different colors in the
first box.

Images quantized by the median cut tech-
nique are shown in figures 5 and ll.
Subjective tests have shown that the median
cut algorithm produces better quantizers

than the popularity algorithm. In some
cases the difference is striking (compare
figures 15 and 16).

Other criteria could be used to decide
which coordinate to bisect. Instead of
choosing the coordinate with the largest
range, one might use the one with the
largest variance. Likewise, one could
choose the split plane so that the sum of
variances for the two new boxes is mini-
mized. This would tend to minimize the
mean squared error better than the median
criterion.

A Fixed Point Algorithm for Improving A
Quantizer

Gray, Kieffer, and Linde [7], have
described an algorithm for finding a
locally optimal multidimensional quantizer.
It is an extension of a method first pro-
posed by Lloyd [16]. A quantizer is called
locally optimal if small perturbations in
Y, the set of representative points,
cannot decrease the total distortion D.

Given a set of representatives Y, the
optimal partition R'(Y) is:

r~ = ix : d(x,y k) ~d(x,yj), j ~k]

which is the locus of points whose nearest
neighbor is y~. Given a partition R, the
optimal set o~ representatives Y'(R) is the
set of y~ such that y~ is the centroid of
all input points ci,~ which lie inside r k.
These can be comblne~ to define a mapping
T which perturbs Y so that D never
increases:

TY = Y' (R' (Y)) .

To paraphrase the equations, for each
representative point Yk, one finds the
centroid of all input points whose nearest
neighbor in Y is Yk"

Lloyd's algorithm applies this mapping
repeatedly in order to improve a quantizer,
and hopefully converge on a fixed point of
the mapping T (a point where TY=Y). Linde
et al. have proven that the algorithm
converges in a finite number of iterations
if the input distribution is finite (as
ours is). The fixed point will be a local
minimum of D, but not necessarily a global
one [7].

This fixed point algorithm can be used
to improve quantizers generated by the
popularity or median cut algorithms.
Experimental results show that the improv-
ement is slight for the latter. The iter-
ation will help more when the first guess
is crude, such as a uniform lattice of
points, as seen in fig. 13.

To make this algorithm practical, one
must be able to find nearest neighbors
quickly. That is our next topic.

300

Computer Graphics Volume 16, Number 3 July 1982

PHASE 3: ~PPING COLORS TO NEAREST NEIGHBORS
IN COLORMAP

Given an input distribution c and a set
of representatives Y, D is minimized when
q maps a point to its nearest represen-
tative:

p(x) = i ~ ~ if d(x,Yi) ~d(x,yj) , j ~i
q(x) Yi

This operation is sometimes called a "near-
est neighbor query" [2]. In our applica-
tion it could also be thought of as an
"inverse colormap", since it maps colors
into pixel values.

By evaluating this function for each
color in the original image, and saving
this information in a table, one can speed
up phase 4 significantly. The alternative
is to evaluate p once per pixel. The
former will be faster if the number of
different colors in the original image is
smaller than the number of pixels in the
image. If one uses a prequantization to
15 bits, as suggested for phase i, the
number of colors will be under 32768. For
all but low-resolution frame buffers, this
is smaller than the number of pixels. Note
that the quantization mapping table will
fit conveniently in the same array that was
used for the histogram.

There are several methods for computing
the function p:

Exhaustive Search

The straightforward way to compute p(x)
is to test all K representatives and choose
the one which minimizes d(x,y.) . Unfor-

• . 1

tunately, this method is slow. Much time
is wasted c'onsidering distant points which
couldn't possibly be the nearest neighbor.
It would be shrewder to do some pre-
processing on Y to set up a database which
enables faster queries.

Locally Sorted Search

We create a database consisting of an NxNxN
lattice of cubical cells each containing a
sorted list of representatives. Each cell's
list should include all representatives
which are the nearest neighbors of some
point in that cell. Each list entry con-
tains two variables: a representative's
number (rep_no) and its distance (dist) from
the nearest point in the cell. D ist is
defined to be zero for representatives
inside the cell. To create the list, we
compute each representative's distance from
the cell, put these in a list, and then
sort the list by the distance key. Note
that a given representative'can occur in
several lists.

A simple way to limit the length of" the
lists is to eliminate representatives which
could not possibly be the nearest neighbors
of any point inside the cell. As shown

in fig. I, one finds the representative
point nearest the center of the cell and
computes its distance from the farthest
corner of the cell. This gives us an
upper bound on the distance from any point
in the cell to its nearest representative.
All representatives whose distance to the
cell is greater than this can be left out
of the list, thereby speeding the list
sorting operation and conserving memory.

TO compute the function p(x) with this
database, we first find the cell which
encloses x, and then execute the following
procedure:

min = infinity;
i = 0;
while (min>entry[i].dist) begin

distance = d(x,y[entry[i].rep_no]) ;
if (distance<min) then begin

nearest = i;
min = distance;

end
i = i+l;

end
return(nearest);

•C

I
I

!

• ! , !
~not in list

in list

l

cell

!
!
! •
I

r

tB

Y
T
!
I
I

fig. i: Point A is representative closest
to cell center. The distance from A to the
corner of the cell most distant from it (B)
is r. Since all points in the cell are
less than r units away from A, any repre-
sentative more than r units away from the
cell can be eliminated from the cell list.
Thus C will be excluded, but D included.

301

How much memory and computation is
involved in the creation of these lists?
This is dependent on the size and number
of cells. If we use a lattice of N 3 cells,
and the average list length is L entries,
the memory required by the database is
O(N3L). Computing distances from each
representative to a cubical cell takes
O(K) time, and the list sort takes O(LIo~L),
so the preparation time is therefore O(N~K+
N3LIogL).

In practice, one should avoid computing
the representative lists for unused cells.
Only the most colorful images will contain
colors in all N 3 cells. One way to compute
only the needed cells is to create them
dynamically, the first time they are used.
When the function p is asked for the
nearest neighbor of a point in an "unchart-
ed" cell, it creates the representative
list for that cell, processes the query,
and marks the cell as "charted".

When choosing N one must compromise
between fast search times and fast pre-
processing times. A fine lattice (large N)
will lead to short cell lists and hence
low search times, but high preprocessing
cost. An extremely coarse lattice, such as
N=I, will function much like exhaustive
search: the long lists will result in high
search times, but the preprocessing time
will be negligible. The best compromise
will depend on the number and distribution
of queries.

Experimental Results for Locall~ Sorted
Search

The average list length L is dependent
on the number and distribution of repre-
sentatives and the number of cells.
Empirical tests on the colormaps generated
by the median cut algorithm for a sample
set of 17 images had an average list
length of 35 when K=256 and N=8. With
exhaustive search, each call to the func-
tion p requires inspection of K represen-
tatives. Using locally sorted search, the
average number of representatives tested
was only ii (also for the case K=256, N=8).
This is 23 times smaller than the number
of tests the exhaustive method would make.

Locally sorted search shows the great-
est advantage over exhaustive search when
K is large and when the colors in the
input image have a wide distribution. In
these cases the preprocessing time to
create the database is overshadowed by the
savings in search time. In the tests men-
tioned above, locally sorted search was
never slower than the exhaustive method.
For the image in fig. ii, it was three
times faster than the exhaustive method.

K-D Tree Search

Another algorithm for nearest neighbor
queries, which came to the attention of the

author only recently, has been proposed by
Friedman, Bentley, and Finkel [6]. Using
a k-d tree database to structure the K
representative points, they achieved a
search time of O(logK). Their algorithm
has not yet been tested for the application
of color image quantization.

PHASE 4: QUANTIZING AND REDRAWING THE IMAGE

To quantize the image, we simply pass
each pixel of the original image through
the quantization mapping table created
during phase 3, and write the pixel values
into a frame buffer. This will redraw the
image (quantized of course) using only K
colors.

Depending on the image, the quantiza-
tion errors may be obvious or invisible.
Images with high spatial frequencies (such
as hair or grass) will show quantization
errors much less than pictures with large,
smoothly shaded areas (such as faces).
This is because the high-frequency contour
edges introduced by the quantization are
masked by the high frequencies in the
original image.

When quantizing to very few colors, or
to a poorly-chosen colormap, the contouring
can be visually distracting (see fig. 6).
Images which suffer from severe contouring
when quantized can be improved with the
technique of dithering.

Dithering

The basic strategy of dithering is to
trade intensity resolution for spatial
resolution. By averaging the intensities
of several neighboring pixels one can get
colors not represented by the colormap.
If the resolution of the frame buffer is
high enough, the eye will do the spatial
blending for us. Taking advantage of this,
it is possible to reproduce many color
images using only four colors, as is done
in color halftoning.

One simple way to dither is to modulate
the original image with a high frequency
signal, such as random noise, before
quantization [21]. A survey of various
dithering techniques can be found in [12].

The dithering technique we reco~aend is
due to Floyd and Steinberg [5]. Their
algorithm compensates for the quantization
error introduced at each pixel by propa-
gating it to its neighbors. If the propa-
gation is directed only to pixels below or
to the right of the "current pixel", we can
do both quantization and propagation in one
top-to-bottom pass over the image.

302

A program to quantize and dither a
color image using their algorithm would
look something like:

for i=0 to NI-I do

for j=0 to NJ-I do begin

x = c. .; (read a color)
1,3

k = p(x); (find nearest rep.)

fi,j = k; (draw quantized image)

e = x-Yk; (quantization error)

(distrib. in 3 directions)

c. = c. + e'3/8;
1,j+l l,j+l

Ci+l, j = Ci+l, j + e'3/8;

Ci+l,j+ 1 = Ci+l,j+ 1 + e/4; \

end

In the above, x and e are vectors; i, j,
and k are scalars.

The improvement that dithering makes
for an image quantized by the median cut
method is shown in figures 12 and 17. If
the colors are carefully chosen, the Floyd-
Steinberg scheme can do surprisingly well
with only 4 colors (fig. 7).

Using dither in the last phase of our
quantizers raises several unanswered
questions. Should our algorithms for
colormap selection be altered because we
are dithering? If so, how? One would
like to guarantee that all colors in the
original image can be generated by blending
(taking a linear combination of) colors in
the colormap. This will be true only if
the input colors lie inside the convex hull
of the representative colors. Methods to
guarantee this deserve further research.

CONCLUSIONS

We found that the architecture of inte-
grated frame buffers forces certain
restrictions on any attempt to display
color images. One is naturally led to the
non-separable multidimensional quantization
problem. Although the optimal solution of
this problem seems computationally intract-
able, there are approximate techniques
which allow high-quality color quantization
to be done efficiently. Using one of the
algorithms described, it is possible to
display a full-color image using only 256
colors, thus tripling memory efficiency.

To put together a color image quantizer
with the algorithms described here, the
author would recommend the following. .The
median cut algorithm is suggested for phase
2 because its sensitivity to the color dis-
tribution of the original image is much
better than that of the popularity

algorithm. To map colors to their nearest
neighbors in the colormap, locally sorted
search has proven fastest. Dithering is
a nice option which is often worth the
extra computation required. The author's
implementation of the above ensemble on a
VAX 11/780 can quantize a 512x486x24-bit
image to 256 colors in under one minute.

The quantization techniques presented
here could be improved in several ways.
By changing the color metric to be more
perceptually-based, better-looking quanti-
zation would result. Also, it would be
nice to find a single database which
functions for all phases of the quantiza-
tion process, to replace the hodgepodge
used here. Perhaps the k-d tree created by
the median cut algorithm could be used for
nearest neighbor search as well.

ACKNOWLEDGEMENTS

Much of the research reported here was
done while I was an undergraduate at MIT,
working part-time at the Architecture
9~chine Group. I would like to thank
Professors Nicholas Negroponte and Andrew
Lippman for their support. Thanks to Tom
Boyle for introducing me to this fascin-
ating topic, and to Paul Trevithick and
Professor Gilbert Strang of the Math
Department for assisting with the theor-
etical formulation of the problem. Dan
Franzblau, Walter Bender, and Professor
Ron MacNeil were my principal image
critics. Kenneth Sloan, now at MIT, was
partially responsible for re-sparking my
interest in color image quantization.

At NYIT, Lance Williams lent a critical
eye, and Becky Allen assisted with prep-
aration of the paper.

[1]

[2]

[3]

[4]

[5]

REFERENCES

Bellman, R. Dynamic Programminq.
Princeton University Press, Princeton,
1957.

Bentley, J. L., Friedman, J. H. Data
structures for range searching.
Computing Survey s ii, 4 (Dec. 1979),
397-409.

Bruce, J. D. Optimum Quantization.
MIT R.L.E. Technical Report #429,
(1965).

Elias, P. Bounds on performance of
optimum quantizers. IEEE Trans. on
Information Theory IT-16, 2 (-Mar.--~970)
172-184.

Floyd, R. W., Steinberg, L. An adapt-
ive algorithm for spatial gray scale.
SID 75, Int. Symp. Dig. Tech. Papers
(1975), 36.

303

[6] Friedman, J. J., Bentley, J. L., and
Finkel, R. A. An algorithm for find-
ing best matches in logarithmic
expected time. ACM Trans. Math.
Software 3, (Sept. 1977), 209-226.

[7] Gray, R. M., Kieffer, J. C., and
Linde, Y. Locally optimal block
quantizer design. Information and
Control 45 (1980) 178-198.

[8] Heckbert, P. Color Image Quantization
for Frame Buffer Display. B.S. thesis
Architecture Machine Group, MIT,
Cambridge, Mass., 1980.

[9] Huang, T. S., Tretiak, O. J., Prasada,
B. T., and Yamaguchi, Y. Design
considerations in PCM transmission of
low-resolution monochrome still pic-
tures. Proc. IEEE 55, 3 (Mar. 1967),
331.

[i0] In der Smitten, F. J. Data-reducing
source encoding of color picture
signals based on chromaticity classes.
Nachrichtentech. Z. 27, (1974), 176.

[ii] Jain, A. K., and Pratt, W. K. Color
image quantization. National Tele-
communications Conference 1972 Record,
IEEE Pub. No. 72, CHO 601-5-NTC,
(Dec. 1972).

[12] Jarvis, J. F., Judice, N., and Ninke,
W.H. A survey of techniques for the
display of continuous tone pictures on
bilevel displays. Computer Graphics
and Image Processing 5, 1 (Mar. 1976),
13-40.

[13] Knuth, D. E. The Art of Computer
Programming, vol. 3, Sorting and
Searching. Addison-Wesley, Reading,
Mass., 1973.

[14] Koontz, W. L. G., Narendra, P. M., and
Fukunaga, K. A branch and bound clus-
tering algorithm. IEEE Trans. Comput.
C-24, 9 (Sept. 1975), 908-915.

[15] Limb, J. 0., Rubinstein, C. B., and
Thompson, J. E. Digital coding of
color video signals - a review. IEEE
Trans. Commun. COM-25, ii (Nov. 1977),
1349-1385.

[16] Lloyd, S. P. Least squares quantiza-
tion in PCM's. Bell Telephone Labs
Memo, Murray Hill, N.J., 1957.

[17] Max, J. Quantizing for minimum
distortion. IRE Trans. Information
Theory IT-6, (Mar. 1960), 7.

[18] Newman, W. M., and Sproull, R. F.
principles of Interactive Computer
Graphics. MacGraw-Hill, New York,
1979.

[19] Panter, P. F., and Dite, W. Quanti-
zation distortion in pulse-count
modulation with nonuniform spacing of
levels. Proc. IRE 39, 1 (Jan. 1951),
44.

[20] Pratt, W. K. Digital Image Processing.
John Wiley and Sons, New York, 1978.

[21] Roberts, L. G. Picture coding using
pseudo-random noise. IRE Trans.
Information Theory IT-8, (Feb. 1962),
145.

[2~ Stenger, L. Quantization of TV chrom-
inance signals considering the visi-
bility of small color differences.
IEEE Trans. Communications COM-25, ii
(Nov. 1977), 1393.

304

fig. 2: 24 bit original
image of "Pamela". All
images 512x486 resolution.

fig. 3: uniform quantization
to 8 bits (3 red, 3 green, 2
blue).

fig. 4: quantized by popu-
larity algorithm (256 colors).

fig. 5: median cut, 256 colors

fig. 6: median cut, 4 colors.
(no dither)

fig. 7: median cut, 4 colors.
(with Floyd-Steinberg dither)

305

fig. 8: 24 bit original
image of "Marc".

fig. 9: uniform quantization
to 8 bits (3 red, 3 green, 2
blue).

fig. i0: popularity algo-
rithm, 256 colors.

fig. ll: median cut, 256 colors

fig. 12: median cut, with
dither, 256 colors.

fig. 13: colormap for fig. 9
after 3 iterations of Lloyd's
fixed point algorithm (256
colors).

306

fig. 14:24 bit original
image of "Surface" (the
surface of the RGB color
cube unrolled).

fig. 15: popularity algorithm,
256 colors.

fig. 16: median cut, 256
colors.

fig. 17: median cut with
dither, 256 colors.

fig. 18: exploded view of
16 tapered quantization
cells in the RGB cube.

307

