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ABSTRACT 

Algorithms for adaptive, tapered quant- 
ization of color images are described. 
The research is motivated by the desire to 
display high-quality reproductions of 
color images with small frame buffers. It 
is demonstrated that many color images 
which would normally require a frame buffer 
having 15 bits per pixel can be qua ntized 
to 8 or fewer bits per pixel with little 
subjective degradation. In most cases, 
the resulting images look significantly 
better than those made with uniform quant- 
ization. 

The color image quantization task is 
broken into four phases: 

i) Sampling the original image for color 
statistics 

2) Choosing a colormap based on the 
color statistics 

3) Mapping original colors to their 
nearest neighbors in the colormap 

4) Quantizing and redrawing the original 
image (with optional dither). 

Several algorithms for each of phases 
2-4 are described, and images created by 
each given. 

CR CATEGORIES: II.3.3 (Information Stor- 
age and Retrieval): Information Search and 
Retrieval - clustering; search process; 
1.3.3 (Computer Graphics): Picture/Image 
Generation - digitization and scanning; 
display algorithms; 1.4.1 (Image Process- 
ing) : Digitization - quantization. 
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INTRODUCTION 

The power and versatility of frame 
buffers has created an increasing demand 
for them in industry, education, and the 
home. Most of these frame buffers are 
capable of displaying a static color image, 
yet many of them do not contain the amount 
of memory necessary to match the spatial 
and color resolution of the human eye. 
The eye is capable of distinguishing at 
least fifty thousand colors [15]. There- 
fore, it would take a frame buffer with at 
least ]5 bits per pixel to reproduce and 
display a color image with no noticeable 
contouring. On smaller frame buffers, 
contouring effects can become objectionable. 
One way to eliminate some of this quant- 
ization error is to employ the method of 
tapered quantization. 

The purpose of this paper is to explore 
techniques for color image quantization 
with the goal of high-quality image display 
on frame buffers. 

The Original Image 

Our input data are the red, green, and 
blue separations of a digitized color 
image. A typical form for the input image 
is a rectangular array of pixels each hav- 
ing 24 bits (8 bits per component). The 
color components are usually represented 
by numbers in the range [0,255]. If the 
original image is in this form, then 
strictly speaking it has already been 
quantized (when it was digitized from a 
video signal, for instance). We will 
assume that this initial quantization does 
not cause perceptible quantization errors. 
This will be the case if (a) the full gamut 
of RGB space is used, that is, if the 
digitization equipment is set up so that 
black is quantized to (r,g,b)=(0,0,0), 
white to (255,255,255), red to (255,0,0), 
etc. and (b) the 256 levels are approx- 
imately equally spaced perceptually. 
Given these conditions, we can regard the 
24-bit original image as the "true" image. 
We will try to approximate it as closely 
as possible when we quantize. 
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Frame Buffers and Colormaps 

It is useful to distinguish between 
two types of frame buffer architectures: 
let's call them "segregated" and "inte- 
grated". In segregated frame buffers, 
there are three independent memories for 
the red, green, and blue components of an 
image. Typically 8 bits are used per 
pixel. An integrated frame buffer, on the 
other hand, stores a single color number 
for each pixel rather than three separate 
components. These color numbers (pixel 
values) are used as addresses into a single 
color lookup table (colormap). The color- 
map provides a level of indirection between 
the data in the picture memory and the 
actual displayed image. For a more 
thorough discussion of frame buffer hard- 
ware, see Newman and Sproull [18]. 

The algorithms we will discuss are 
intended for integrated frame buffers 
having a colormap. 

Introduction to Quantization 

Definitions: 
Quantization is the process of assign- 

ing representation values to ranges of 
input values. In image processing, the 
value being quantized can be an analog or 
digital signal. 

Color image quantization is the 
process of selecting a set of colors to 
represent the color gamut of an image, 
and computing the mapping from color space 
to representative colors. 

There are two general classes of 
quantization methods: uniform and tapered. 
In uniform quantization, the range of the 
input variable is divided into intervals 
of equal length. The choice of intervals 
in tapered quantization is usually based 
on the statistical distribution of the 
input variable. To compare the quality 
of different quantizations, a distortion 
measure, or error metric, is often intro- 
duced. With this formalism, one can 
search for the "optimal" tapered quant- 
ization of a variable (or image). 

Notation: 
In the following, let x be an M-dim- 

ensional input point (a 3-D color for our 
purposes). A quantizer consists of: 
(a) a set of K representative or output 

points: Y = lYi, i=I,2 ..... KI, 
(b) a partition of the input space into 

regions (quantization cells) : 
R = {r i, i=1,2 ..... KI, 

(c) a mapping from input points to rep- 
representative indices: 

p(x) = i if x6r i, and 
(d) the quantization function which maps 

input points into output points: 
q(x) = y[p(x)]. 

In color image quantization, Y is the 
colormap into which we will quantize, K is 
the number of colors in the colormap 

(usually 1024 or less), and p is a mapping 
from colors in the original image to pixel 
values in the quantized image. 

The images are notated as follows: 
Let ci, j be the color of the pixel in 

the original image at row i, column j, 
where 0~i<NI and 0~j<NJ. Denote the 
pixel value at row i, column j of the final 
(quantized) image by fi,j" Note that c is 

a vector matrix and f a scalar matrix. We 
assume the original ann final images have 
the same resolution. 

COLOR I~GE QUANTIZATION 

Uniform quantization, though compu- 
tationally much faster than adaptive, 
tapered quantization, leaves much room for 
improvement. Compare the 24-bit original 
image in fig. 2 with the uniform 8-bit 
quantization in fig. 3. The contouring 
here is quite serious. It results because 
many of the colors in the colormap are not 
used in the final picture; they are wasted. 
By adapting a colormap to the color gamut 
of the original image, we are assured of 
using every color in the colormap, and 
thereby reproducing the original image more 
closely. That is the intuitive concept 
behind tapered color image quantization. 
We will now develop these ideas formally. 

When an image is quantized, each of the 
3-dimensional colors in the original image 
must be encoded into a single pixel value. 
To do this we compute the mapping: 

fi,j = P(Ci,j) for 0~i<NI, 0 ~j<NJ. 

The display processor in the frame 
buffer displaying our final picture passes 
the pixel values through the colormap Y: 

YP(ci,j) = q(ci,j). 

This will display a picture closely resem- 
bling the original if we have quantized 
well. 

Measuring Quantization Error 

To measure the difference between the 
original and quantized images (the total 
quantization error), we use the following 
formula: 

D = -- J L d(ci,4, q(ci,j)) 
i,j 

where d(x,y) is a distortion function or 
color metric which measures the "diff- 
erence" between corresponding colors in the 
original and final images [7]. We will use 
a very simple color metric, distance 
squared in RGB space: 

d(x,y) = (xr-Yr) 2+(xg-yg)2+(xb-Yb) 2 

where x = (Xr,Xg,X b) and Y=(Yr,Yg,Yb)" 
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This formula is chosen for its computa- 
tional speed and simplicity. Ideally, the 
color metric should be perceptually-based, 
since the human eye is final judge of 
quantization quality. The use of YIQ or 
Lab color space for the color metric would 
probably improve our quantizers somewhat 
[15]. 

We define the "optimal" quantizer (for 
a given image and number of colors K) as 
the one which minimizes D. 

Quantization Literature 

One-dimensional quantization has an 
extensive literature [4], [9] , [17] , [19] . 
It is possible to find optimal 1-dimen- 
sional quantizers efficiently. Algorithms 
which make use of dynamic programming [I] 
to find an optimal quantizer for an N-level 
input in O(N2K) time are given in [3] and 
[8]. These can be used to quantize a mono- 
chrome picture in a matter of seconds at 
today's computer speeds. 

Color image quantization has received 
little attention in the literature until 
recently. It is usually done by treating 
the three color components independently. 
Independent quantization in spaces such as 
YIQ and Lab (see [15] and [20]) is ineffic- 
ient because much of their space lies 
outside the RGB color cube [ii]. Subjec- 
tive experiments were used by In der 
Smitten to subdivide RGB space into 125 
volumes [i0]. Some contouring is visible 
with his quantizer. Stenger has also done 
some tests of tapered color quantization 
[22]. Koontz, Narendra, and Fukunaga [14] 
have published an algorithm for finding 
the optimal quantization (they call them 
"clusterings") for small input and output 
sets. Their program required 28 seconds 
to find the optimal classification of 120 
points into 8 classes. They do not ana- 
lyze the speed of their algorithm, so it 
is difficult to predict the computation 
time for larger quantization jobs such 
as ours. Assuming a linear-time algorithm 
(a conservative guess), quantizing several 
hundred thousand colors would take half a 
day. Clearly this is not practical. 

Multidimensional quantization is much 
more difficult than 1-dimensional quant- 
ization. The reason for this is the 
increased interdependency of quantization 
cells. While in the one-dimensional case 
all intervals are determined by the two 
thresholds at either end, in the multi- 
dimensional case the quantization cells can 
be polytopes with any number of sides. The 
complex topology of multidimensional 
tapered quantization cells is suggested 
by the shapes in fig. 18. 

Optimal multidimensional quantization 
has no known fast solution [7]. The 
methods we will describe use heuristic 
approaches to approximate the optimal. 

ALGORITHMS FOR COLOR I~GE QUANTIZATION 

The algorithms for color quantization 
described below use the following four 
phases: 

i) sample image to determine color dis- 
tribution 

2) select colormap based on the distri- 
bution 

3) compute quantization mapping from 24- 
bit colors to representative colors 
(ie. colors in the colormap) 

4) redraw the image, quantizing each 
pixel. 

Choosing the colormap is the most 
challenging task. Once this is done, 
computing the mapping table from colors to 
pixel values is straightforward. 

PHASE i: SAMPLING THE ORIGINAL IMAGE 

The information needed by the colormap 
selection algorithms of phase 2 is a hist- 
ogram of the colors in the original image. 
This is collected in one pass over the 
input image. To conserve memory, a pre- 
quantization from 24 bits to 15 bits (5 
bits red, 5 bits green, 5 bits blue) is 
suggested. In this case the color fre- 
quency histogram will be a table of length 
32768. This clumping of the colors has the 
effect of reducing the number of different 
colors and increasing the frequency of each 
color. These properties are important to 
the algorithms described below. 

PHASE 2: CHOOSING A COLOR~P 

We discuss two algorithms for choosing 
a set of representatives (colormap) based 
on the input distribution, and a process 
which can be used to perturb the choice of 
representatives to improve a quantizer. 

The Popularity Algorithm 

The popularity algorithm was developed 
independently by two groups in 1978: Tom 
Boyle and Andy Lippman at MIT's Architech- 
ture Machine Group and Ephraim Cohen at the 
New York Institute of Technology. Boyle & 
Lippman's ideas were implemented by the 
author at MIT [8]; the latter is unpub- 
lished. 

The assumption of this algorithm is 
that the colormap can be made by finding 
the densest regions in the color distri- 
bution of the original image. The popu- 
larity algorithm simply chooses the K 
colors from the histogram with the highest 
frequencies, and uses these for the color- 
map. This can be done with a simple 
selection sort [13]. This will take time 
O(NK), where N is the number of colors in 
the histogram. 

The popularity algorithm functions well 
for many images (fig. 4), but performs 
poorly on ones with a wide range of colors 
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(fig. 15), or when asked to quantize to a 
small number of colors (say<50). It often 
neglects colors in sparse regions of the 
color space. 

The Median Cut Alqorithm 

The median cut algorithm was proposed 
by the author in [8], and is reprinted here 
with minor changes. Kenneth Sloan has 
pointed out that the database used in this 
algorithm is nearly identical to Bentley's 
k-d trees [2]. 

The concept behind the median cut algo- 
rithm is to use each of the colors in the 
synthesized colormap to represent an equal 
number of pixels in the original image. 
This algorithm repeatedly subdivides color 
space into smaller and smaller rectangular 
boxes. We start with one box which tightly 
encloses the colors of all NIxNJ pixels 
from the original image. The number of 
different colors in this first box is 
dependent on the color resolution used. 
Experimental results show that 15 bits per 
color (the resolution of the histogram) is 
sufficient in most cases. 

Iteration step: split a box. 
The box is "shrunk" to fit tightly 

around the points (colors) it encloses, by 
finding the minimum and maximum values of 
each of the color coordinates. Next we use 
"adaptive partitioning" (Bentley's termin- 
ology) to decide which way to split the box. 
The enclosed points are sorted along the 
longest dimension of the box, and segregated 
into two halves at the median point. 
Approximately equal numbers of points will 
fall on each side of the cutting plane. 

The above step is recursively applied 
until K boxes are generated. If, at some 
point in the subdivision, we attempt to 
split a box containing only one point 
(repeated many times, perhaps), the spare 
box (which would have gone unused) can be 
reassigned to split the largest box we can 
find. 

After K boxes are generated, the repre- 
sentative for each box is computed by aver- 
aging the colors contained in each. The 
list of representatives is the colormap Y. 

The sorting'used in the iteration step 
can be done efficiently with a radix list 
sort [13], since the color coordinates are 
small integers, generally within the range 
[0,255]. Splitting each box will therefore 
take time proportional to the number of 
different colors enclosed. Generating the 
colormap will take O(NlogK) time, where N 
is the number of different colors in the 
first box. 

Images quantized by the median cut tech- 
nique are shown in figures 5 and ll. 
Subjective tests have shown that the median 
cut algorithm produces better quantizers 

than the popularity algorithm. In some 
cases the difference is striking (compare 
figures 15 and 16). 

Other criteria could be used to decide 
which coordinate to bisect. Instead of 
choosing the coordinate with the largest 
range, one might use the one with the 
largest variance. Likewise, one could 
choose the split plane so that the sum of 
variances for the two new boxes is mini- 
mized. This would tend to minimize the 
mean squared error better than the median 
criterion. 

A Fixed Point Algorithm for Improving A 
Quantizer 

Gray, Kieffer, and Linde [7], have 
described an algorithm for finding a 
locally optimal multidimensional quantizer. 
It is an extension of a method first pro- 
posed by Lloyd [16]. A quantizer is called 
locally optimal if small perturbations in 
Y, the set of representative points, 
cannot decrease the total distortion D. 

Given a set of representatives Y, the 
optimal partition R'(Y) is: 

r~ = ix : d(x,y k) ~d(x,yj), j ~k] 

which is the locus of points whose nearest 
neighbor is y~. Given a partition R, the 
optimal set o~ representatives Y'(R) is the 
set of y~ such that y~ is the centroid of 
all input points ci,~ which lie inside r k. 
These can be comblne~ to define a mapping 
T which perturbs Y so that D never 
increases: 

TY = Y' (R' (Y)) . 

To paraphrase the equations, for each 
representative point Yk, one finds the 
centroid of all input points whose nearest 
neighbor in Y is Yk" 

Lloyd's algorithm applies this mapping 
repeatedly in order to improve a quantizer, 
and hopefully converge on a fixed point of 
the mapping T (a point where TY=Y). Linde 
et al. have proven that the algorithm 
converges in a finite number of iterations 
if the input distribution is finite (as 
ours is). The fixed point will be a local 
minimum of D, but not necessarily a global 
one [7]. 

This fixed point algorithm can be used 
to improve quantizers generated by the 
popularity or median cut algorithms. 
Experimental results show that the improv- 
ement is slight for the latter. The iter- 
ation will help more when the first guess 
is crude, such as a uniform lattice of 
points, as seen in fig. 13. 

To make this algorithm practical, one 
must be able to find nearest neighbors 
quickly. That is our next topic. 
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PHASE 3: ~PPING COLORS TO NEAREST NEIGHBORS 
IN COLORMAP 

Given an input distribution c and a set 
of representatives Y, D is minimized when 
q maps a point to its nearest represen- 
tative: 

p(x) = i ~ ~ if d(x,Yi) ~d(x,yj) , j ~i 
q(x) Yi 

This operation is sometimes called a "near- 
est neighbor query" [2]. In our applica- 
tion it could also be thought of as an 
"inverse colormap", since it maps colors 
into pixel values. 

By evaluating this function for each 
color in the original image, and saving 
this information in a table, one can speed 
up phase 4 significantly. The alternative 
is to evaluate p once per pixel. The 
former will be faster if the number of 
different colors in the original image is 
smaller than the number of pixels in the 
image. If one uses a prequantization to 
15 bits, as suggested for phase i, the 
number of colors will be under 32768. For 
all but low-resolution frame buffers, this 
is smaller than the number of pixels. Note 
that the quantization mapping table will 
fit conveniently in the same array that was 
used for the histogram. 

There are several methods for computing 
the function p: 

Exhaustive Search 

The straightforward way to compute p(x) 
is to test all K representatives and choose 
the one which minimizes d(x,y.) . Unfor- 

• . 1 

tunately, this method is slow. Much time 
is wasted c'onsidering distant points which 
couldn't possibly be the nearest neighbor. 
It would be shrewder to do some pre- 
processing on Y to set up a database which 
enables faster queries. 

Locally Sorted Search 

We create a database consisting of an NxNxN 
lattice of cubical cells each containing a 
sorted list of representatives. Each cell's 
list should include all representatives 
which are the nearest neighbors of some 
point in that cell. Each list entry con- 
tains two variables: a representative's 
number (rep_no) and its distance (dist) from 
the nearest point in the cell. D ist is 
defined to be zero for representatives 
inside the cell. To create the list, we 
compute each representative's distance from 
the cell, put these in a list, and then 
sort the list by the distance key. Note 
that a given representative'can occur in 
several lists. 

A simple way to limit the length of" the 
lists is to eliminate representatives which 
could not possibly be the nearest neighbors 
of any point inside the cell. As shown 

in fig. I, one finds the representative 
point nearest the center of the cell and 
computes its distance from the farthest 
corner of the cell. This gives us an 
upper bound on the distance from any point 
in the cell to its nearest representative. 
All representatives whose distance to the 
cell is greater than this can be left out 
of the list, thereby speeding the list 
sorting operation and conserving memory. 

TO compute the function p(x) with this 
database, we first find the cell which 
encloses x, and then execute the following 
procedure: 

min = infinity; 
i = 0; 
while (min>entry[i].dist) begin 

distance = d(x,y[entry[i].rep_no]) ; 
if (distance<min) then begin 

nearest = i; 
min = distance; 

end 
i = i+l; 

end 
return(nearest); 
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fig. i: Point A is representative closest 
to cell center. The distance from A to the 
corner of the cell most distant from it (B) 
is r. Since all points in the cell are 
less than r units away from A, any repre- 
sentative more than r units away from the 
cell can be eliminated from the cell list. 
Thus C will be excluded, but D included. 
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How much memory and computation is 
involved in the creation of these lists? 
This is dependent on the size and number 
of cells. If we use a lattice of N 3 cells, 
and the average list length is L entries, 
the memory required by the database is 
O(N3L). Computing distances from each 
representative to a cubical cell takes 
O(K) time, and the list sort takes O(LIo~L), 
so the preparation time is therefore O(N~K+ 
N3LIogL). 

In practice, one should avoid computing 
the representative lists for unused cells. 
Only the most colorful images will contain 
colors in all N 3 cells. One way to compute 
only the needed cells is to create them 
dynamically, the first time they are used. 
When the function p is asked for the 
nearest neighbor of a point in an "unchart- 
ed" cell, it creates the representative 
list for that cell, processes the query, 
and marks the cell as "charted". 

When choosing N one must compromise 
between fast search times and fast pre- 
processing times. A fine lattice (large N) 
will lead to short cell lists and hence 
low search times, but high preprocessing 
cost. An extremely coarse lattice, such as 
N=I, will function much like exhaustive 
search: the long lists will result in high 
search times, but the preprocessing time 
will be negligible. The best compromise 
will depend on the number and distribution 
of queries. 

Experimental Results for Locall~ Sorted 
Search 

The average list length L is dependent 
on the number and distribution of repre- 
sentatives and the number of cells. 
Empirical tests on the colormaps generated 
by the median cut algorithm for a sample 
set of 17 images had an average list 
length of 35 when K=256 and N=8. With 
exhaustive search, each call to the func- 
tion p requires inspection of K represen- 
tatives. Using locally sorted search, the 
average number of representatives tested 
was only ii (also for the case K=256, N=8). 
This is 23 times smaller than the number 
of tests the exhaustive method would make. 

Locally sorted search shows the great- 
est advantage over exhaustive search when 
K is large and when the colors in the 
input image have a wide distribution. In 
these cases the preprocessing time to 
create the database is overshadowed by the 
savings in search time. In the tests men- 
tioned above, locally sorted search was 
never slower than the exhaustive method. 
For the image in fig. ii, it was three 
times faster than the exhaustive method. 

K-D Tree Search 

Another algorithm for nearest neighbor 
queries, which came to the attention of the 

author only recently, has been proposed by 
Friedman, Bentley, and Finkel [6]. Using 
a k-d tree database to structure the K 
representative points, they achieved a 
search time of O(logK). Their algorithm 
has not yet been tested for the application 
of color image quantization. 

PHASE 4: QUANTIZING AND REDRAWING THE IMAGE 

To quantize the image, we simply pass 
each pixel of the original image through 
the quantization mapping table created 
during phase 3, and write the pixel values 
into a frame buffer. This will redraw the 
image (quantized of course) using only K 
colors. 

Depending on the image, the quantiza- 
tion errors may be obvious or invisible. 
Images with high spatial frequencies (such 
as hair or grass) will show quantization 
errors much less than pictures with large, 
smoothly shaded areas (such as faces). 
This is because the high-frequency contour 
edges introduced by the quantization are 
masked by the high frequencies in the 
original image. 

When quantizing to very few colors, or 
to a poorly-chosen colormap, the contouring 
can be visually distracting (see fig. 6). 
Images which suffer from severe contouring 
when quantized can be improved with the 
technique of dithering. 

Dithering 

The basic strategy of dithering is to 
trade intensity resolution for spatial 
resolution. By averaging the intensities 
of several neighboring pixels one can get 
colors not represented by the colormap. 
If the resolution of the frame buffer is 
high enough, the eye will do the spatial 
blending for us. Taking advantage of this, 
it is possible to reproduce many color 
images using only four colors, as is done 
in color halftoning. 

One simple way to dither is to modulate 
the original image with a high frequency 
signal, such as random noise, before 
quantization [21]. A survey of various 
dithering techniques can be found in [12]. 

The dithering technique we reco~aend is 
due to Floyd and Steinberg [5]. Their 
algorithm compensates for the quantization 
error introduced at each pixel by propa- 
gating it to its neighbors. If the propa- 
gation is directed only to pixels below or 
to the right of the "current pixel", we can 
do both quantization and propagation in one 
top-to-bottom pass over the image. 
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A program to quantize and dither a 
color image using their algorithm would 
look something like: 

for i=0 to NI-I do 

for j=0 to NJ-I do begin 

x = c. .; (read a color) 
1,3 

k = p(x); (find nearest rep.) 

fi,j = k; (draw quantized image) 

e = x-Yk; (quantization error) 

(distrib. in 3 directions) 

c. = c. + e'3/8; 
1,j+l l,j+l 

Ci+l, j = Ci+l, j + e'3/8; 

Ci+l,j+ 1 = Ci+l,j+ 1 + e/4; \ 

end 

In the above, x and e are vectors; i, j, 
and k are scalars. 

The improvement that dithering makes 
for an image quantized by the median cut 
method is shown in figures 12 and 17. If 
the colors are carefully chosen, the Floyd- 
Steinberg scheme can do surprisingly well 
with only 4 colors (fig. 7). 

Using dither in the last phase of our 
quantizers raises several unanswered 
questions. Should our algorithms for 
colormap selection be altered because we 
are dithering? If so, how? One would 
like to guarantee that all colors in the 
original image can be generated by blending 
(taking a linear combination of) colors in 
the colormap. This will be true only if 
the input colors lie inside the convex hull 
of the representative colors. Methods to 
guarantee this deserve further research. 

CONCLUSIONS 

We found that the architecture of inte- 
grated frame buffers forces certain 
restrictions on any attempt to display 
color images. One is naturally led to the 
non-separable multidimensional quantization 
problem. Although the optimal solution of 
this problem seems computationally intract- 
able, there are approximate techniques 
which allow high-quality color quantization 
to be done efficiently. Using one of the 
algorithms described, it is possible to 
display a full-color image using only 256 
colors, thus tripling memory efficiency. 

To put together a color image quantizer 
with the algorithms described here, the 
author would recommend the following. .The 
median cut algorithm is suggested for phase 
2 because its sensitivity to the color dis- 
tribution of the original image is much 
better than that of the popularity 

algorithm. To map colors to their nearest 
neighbors in the colormap, locally sorted 
search has proven fastest. Dithering is 
a nice option which is often worth the 
extra computation required. The author's 
implementation of the above ensemble on a 
VAX 11/780 can quantize a 512x486x24-bit 
image to 256 colors in under one minute. 

The quantization techniques presented 
here could be improved in several ways. 
By changing the color metric to be more 
perceptually-based, better-looking quanti- 
zation would result. Also, it would be 
nice to find a single database which 
functions for all phases of the quantiza- 
tion process, to replace the hodgepodge 
used here. Perhaps the k-d tree created by 
the median cut algorithm could be used for 
nearest neighbor search as well. 
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fig. 2: 24 bit original 
image of "Pamela". All 
images 512x486 resolution. 

fig. 3: uniform quantization 
to 8 bits (3 red, 3 green, 2 
blue). 

fig. 4: quantized by popu- 
larity algorithm (256 colors). 

fig. 5: median cut, 256 colors 

fig. 6: median cut, 4 colors. 
(no dither) 

fig. 7: median cut, 4 colors. 
(with Floyd-Steinberg dither) 
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fig. 8: 24 bit original 
image of "Marc". 

fig. 9: uniform quantization 
to 8 bits (3 red, 3 green, 2 
blue). 

fig. i0: popularity algo- 
rithm, 256 colors. 

fig. ll: median cut, 256 colors 

fig. 12: median cut, with 
dither, 256 colors. 

fig. 13: colormap for fig. 9 
after 3 iterations of Lloyd's 
fixed point algorithm (256 
colors). 
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fig. 14:24 bit original 
image of "Surface" (the 
surface of the RGB color 
cube unrolled). 

fig. 15: popularity algorithm, 
256 colors. 

fig. 16: median cut, 256 
colors. 

fig. 17: median cut with 
dither, 256 colors. 

fig. 18: exploded view of 
16 tapered quantization 
cells in the RGB cube. 
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